On some properties of Płonka sums

S. Bonzio¹ and G. Zecchini¹

Department of Mathematics and Computer Science, University of Cagliari, Italy.

1 Introduction

The Płonka sum is a construction introduced in the 1960s in Universal Algebra by the eponymous Polish mathematician [7] (see also [9, 1]) that allows to construct a new algebra out of a semilattice direct system of similar (disjoint) algebras, called the fibers (of the system). The theory of Płonka sums has been mostly studied in the case of a similarity type without constant functional symbols: in such a case the fibres are subalgebras of their Płonka sum.

Płonka sums are strictly connected with regular identities. Recall that an identity $\alpha \approx \beta$ (in an algebraic language τ and over some set of variables X) is regular if $Var(\alpha) = Var(\beta)$. An identity $\alpha \approx \beta$ is valid in the Płonka sum over a non-trivial semilattice direct system $\mathbb{A} = ((\mathbf{A}_i)_{i \in I}, (I, \leq), (p_{ij})_{i \leq j})$ (i.e. $|I| \geq 2$) if and only if it is a regular identity valid in each of the fibers of \mathbb{A} .

Given a class of similar algebras \mathcal{K} , its regularization is the variety $\mathcal{R}(\mathcal{K})$ defined by the regular identities valid in \mathcal{K} . This variety is particularly interesting when the class \mathcal{K} is a strongly irregular τ -variety \mathcal{V} - an assumption that includes almost all examples of known irregular varieties -, i.e. a variety satisfying an identity of the form $p(x,y) \approx x$ for some binary τ -term p: in such a case, every algebra in $\mathcal{R}(\mathcal{V})$ is the Płonka sum over a semilattice direct systems (with zero) of algebras in \mathcal{V} .

The following is quite natural.

Question: which algebraic properties holding for \mathcal{V} are also valid for $\mathcal{R}(\mathcal{V})$?

With respect to the question, several properties for $\mathcal{R}(\mathcal{V})$ have been established over the years, including the description of the lattice of the subvarieties of regularized varieties [3], of their subdirectly irreducible members [5], the equational basis of regularized varieties [11], and the structure of free algebras [10].

In this talk, we will give a brief overview of the theory of Płonka sums over an algebraic language with constant symbols with a particular emphasis on the structural side. Then we will address the above question with respect to the following properties: local finiteness, epimorphism surjectivity (ES), amalgamation property (AP) and congruence extension property (CEP).

2 Free algebras and local finiteness

Free algebras in the regularization $R(\mathcal{V})$ (of a strongly irregular variety \mathcal{V}) are characterized by Romanowska in [10] under the assumption that the language of \mathcal{V} contains no constant symbols (see also [8]). The following covers the more general case of an algebraic language containing constants' symbols.

Theorem 1. Let \mathbf{A} be an algebra in $\mathcal{R}(\mathcal{V})$, with \mathcal{V} a strongly irregular variety. Then $\mathbf{A} \in \mathcal{R}(\mathcal{V})$ is free on the set of generators $\{a_j\}_{j \in J}$ iff \mathbf{A} is a Plonka sum over a semilattice direct sistem with zero $((\mathbf{A}_i)_{i \in I}, (I, \leq), (p_{ij})_{i \leq j})$ such that

1. (I, \leq) is the free semilattice with zero on the set of generators J;

- 2. for every $i \in I$, \mathbf{A}_i is a finitely generated \mathcal{V} -free algebra. In particular \mathbf{A}_i has n generators $G^i = \{g_1^i, \dots, g_n^i\}$ iff $i = i_1 \vee \dots \vee i_n$, for $i_1, \dots, i_n \in J$ $(i_k \neq i_m \text{ for } k \neq m)$, and if $i \in J$ then \mathbf{A}_i is one generated by the element $g_1^i = a_{i_1} = a_i$;
- 3. for every $i \in I$, p_{i_0i} is the unique homomorphism from \mathbf{A}_{i_0} into \mathbf{A}_i , where i_0 is the least element of I, while for every $i_1, ..., i_n \in J$ ($\forall n \in \mathbb{N}^+$) if $i = i_1 \vee ... \vee ... \vee i_n$ then for every $j \in \{1, ..., n\} : p_{i_ji} : \mathbf{A}_{i_j} \to \mathbf{A}_i$ is the unique (injective) homomorphism extending the map $p_{i_ji}^0 : \{a_{i_j}\} \to \mathbf{A}_i$, $a_{i_j} \mapsto p_{i_ji}^0(g_j^i) := g_j^k$. In particular, for $i_0 \neq i \leq k$, $p_{i_k} : \mathbf{A}_i \to \mathbf{A}_k$ is the unique (injective) homomorphism extending the map $p_{i_k}^0 : G^i \to \mathbf{A}_k$, $g_i^i \mapsto p_{i_k}^0(g_i^i) := g_j^k$.

Corollary 1. Let V be a strongly irregular variety, $\mathcal{R}(V)$ its regularization, \mathbf{A}_n the $\mathcal{R}(V)$ -free algebra on $n \in \mathbb{N}$ generators, then

$$|A_n| = \sum_{j=0}^n \binom{n}{j} |B_j|,$$

where \mathbf{B}_{i} is the \mathcal{V} -free algebra on j generators.

Since local finiteness can be controlled on free algebras [2, Theorem 10.15], the following corollary holds.

Corollary 2. Let V be a strongly irregular variety. If V is locally finite, then $\mathcal{R}(V)$ is locally finite.

3 Congruences

In [1] a very natural **problem** is posed: to describe the congruence lattice of algebras in regular varieties.

Let $\mathbb{A} = ((\mathbf{A}_i)_{i \in I}, (I, \leq), (p_{ij})_{i \leq j})$ be a semilattice direct system in a strongly irregular τ -variety \mathcal{V} and \mathbf{A} its Płonka sum. Let's begin our investigation by starting with a congruence and trying to deduce its essential structural features.

Let $\theta \in Con(\mathbf{A})$, then for every $(i,j) \in I \times I$ we define $\theta_{ij} := \theta \cap (A_i \times A_j)$ and $S_\theta := \{(i,j) \in I \times I \mid \theta_{ij} \neq \emptyset\}$.

Lemma 1. Let τ be any algebraic language, then $\forall (i,j) \in S_{\theta}, \forall a \in A_i : (a, p_{ii \lor j}(a)) \in \theta$. Moreover, S_{θ} is a reflexive and symmetric subsemilattice of $\mathbf{I} \times \mathbf{I}$.

Unfortunately, transitivity is not guaranteed, but a (kind of) weak form of transitivity, outlined in the following Lemma, is always valid.

Lemma 2. Let τ be any algebraic language, then $\forall i, j, k \in I : (i, j), (j, k) \in S_{\theta} \Rightarrow (i, i \lor k) \in S_{\theta}$.

To simplify the exposition, we will say that S_{θ} is **upper transitive**. In some particular, yet relevant, cases, S_{θ} turns out to be a congruence on **I**.

Corollary 3. Let τ be any algebraic language. If one of the following occurs:

- (i) I is a chain;
- (ii) τ be an algebraic language containing constants

then $S_{\theta} \in Con(\mathbf{I})$.

Consequently, transitivity is always ensured for algebraic languages having constants.

The following result provides the sought-after characterization.

Theorem 2. Let τ be any algebraic language. Let $S \subseteq I \times I$ and $(\theta_{ii})_{i \in I}$ be a family such that the following conditions occur:

- (i) S is a reflexive, symmetric and upper transitive subsemilattice of $I \times I$;
- (ii) $\forall i \in I : \theta_{ii} \in Con(\mathbf{A}_i);$
- (iii) $\forall (i,j) \in I \times I : \theta_{ii} \subseteq (p_{ii \vee j} \times p_{ii \vee j})^{-1}(\theta_{i \vee j, i \vee j}), \text{ with equality if } (i,j) \in S;$

$$(iv) \ \forall (i,j) \in I \times I : (i,j) \in S \iff (i,i\vee j), (j,i\vee j) \in S, (p_{ii\vee j}\times p_{ji\vee j})^{-1}(\theta_{i\vee j,i\vee j}) \neq \emptyset$$

For every $(i,j) \in S \setminus \Delta_{\mathbf{I}}$, let $\theta_{ij} := (p_{ii \vee j} \times p_{ji \vee j})^{-1}(\theta_{i \vee j, i \vee j})$, then

$$\theta := \bigcup_{(i,j) \in S} \theta_{ij} \in Con(\mathbf{A}).$$

Furthermore, all the elements of $Con(\mathbf{A})$ arise in this way.

In the case of an algebraic language containing constants (or if \mathcal{V} admits an algebraic constant), the characterization takes on a simpler form, since requirement (iv) is automatically satisfied and $S \in Con(\mathbf{I})$.

4 Amalgamation and Congruence Extension Property

It is very natural to ask whether the amalgamation property (AP) can be "lifted" through Płonka sums. More precisely, does $\mathcal{R}(\mathcal{V})$ have the (strong) AP when \mathcal{V} is strongly irregular and has (strong) AP?

The fact that semilattices (with zero) have (strong) AP could point to a positive answer. Surprisingly enough, Hall [4, Remark 5] showed that Clifford semigroups, namely the regularization of groups (see [9] for details), fail to have AP.

Thanks to the following notion, Hall's argument can be easily generalized.

Definition 1. An algebra **A** is *hereditarily simple* if each of its subalgebras is simple. A variety \mathcal{V} is *hereditarily simple* if each simple algebra in \mathcal{V} is hereditarily simple.

The following result by Pastijn [6] links the validity of the congruence extension property in a strongly irregular variety to the existence of amalgams in $\mathcal{R}(\mathcal{V})$ for specific V-formations in $\mathcal{R}(\mathcal{V})$.

Proposition 1 ([6]). Let V be a strongly irregular variety. Then V has CEP iff $\forall \mathbf{A} \in V, \forall \mathbf{B} \leq \mathbf{A}, \forall \theta \in Con(\mathbf{B})$ the following V-formation in $\mathcal{R}(V)$

has an amalgam in $\mathcal{R}(\mathcal{V})$.

Corollary 4. Let V be a strongly irregular variety. If $\mathcal{R}(V)$ has AP, then V has CEP. In particular, if V is not hereditarily simple, then $\mathcal{R}(V)$ fails to have AP.

Pastijn [6] indeed gives an answer to our question with respect to (strong) AP and CEP.

Theorem 3 ([6]). Let V be a strongly irregular variety. Then:

- 1. $\mathcal{R}(\mathcal{V})$ has CEP if and only if \mathcal{V} has CEP.
- 2. $\mathcal{R}(\mathcal{V})$ has (strong) AP if and only if \mathcal{V} has CEP and (strong) AP.

5 Epimorphism Surjectivity

Epimorphism surjectivity is another property preserved by Płonka sums. More specifically **Theorem 4.** Let V be a strongly irregular variety. $\mathcal{R}(V)$ has ES if and only if V has ES.

References

- S. Bonzio, F. Paoli, and M. Pra Baldi. Logics of Variable Inclusion. Springer, Trends in Logic, 2022.
- [2] S. Burris and H. P. Sankappanavar. A course in Universal Algebra. Available in internet https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html, the millennium edition, 2012.
- [3] J. Dudek and E. Graczyinska. The lattice of varieties of algebras. Bull. Acad. Polon. Sci. Ser. Sci. Math, 29:337–340, 1981.
- [4] T. Hall. Free products with amalgamation of inverse semigroups. *Journal of Algebra*, 34(3):375–385, 1975.
- [5] H. Lakser, R. Padmanabhan, and C. R. Platt. Subdirect decomposition of Plonka sums. Duke Mathematical Journal, 39:485–488, 1972.
- [6] F. J. Pastijn. Constructions of varieties that satisfy the amalgamation property and the congruence extension property. *Studia Scientiarum Mathematicarum Hungarica*, 17:101–111, 1982.
- [7] J. Płonka. On a method of construction of abstract algebras. Fundamenta Mathematicae, 61(2):183–189, 1967.
- [8] J. Płonka. On free algebras and algebraic decompositions of algebras from some equational classes defined by regular equations. *Algebra Universalis*, 1:261–264, 1971.
- [9] J. Płonka and A. Romanowska. Semilattice sums. In A. Romanowska and J. D. H. Smith, editors, Universal Algebra and Quasigroup Theory, pages 123–158. Heldermann, 1992.
- [10] A. Romanowska. On free algebras in some equational classes defined by regular equations. Demonstratio Mathematica, 11(4):1131–1137, 1978.
- [11] A. Romanowska. On regular and regularized varieties. Algebra Universalis, 23:215–241, 1986.