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Introduction. Abelian logic, introduced in [2, 6], is the logic of lattice-ordered abelian groups,
or, equivalently, R equipped with the operations min, max, +, —, and 0. A minimal modal
extension of this logic, called Abelian modal logic, was defined in [3] based on standard Kripke
frames, where the operations on R are calculated locally at worlds and the modal operator O
is interpreted by taking infima of values at accessible worlds. Abelian modal logic not only
provides a framework for reasoning about (transitions between) states represented by vectors
over R, but also contains, under translation, the minimal Lukasiewicz modal logic studied in [4].

Notably, both Abelian modal logic and F.ukasiewicz modal logic lack an explicit finitary
axiomatisation. As a first step towards addressing this gap, an axiomatization was obtained
in [3] for the modal-multiplicative fragment of the logic following a proof-theoretic approach.
In [5], this approach was used to obtain a quasi-equational axiomatization of the equational
theory of the modal-meet-semilattice-ordered-monoid fragment. In this work, we employ a
canonical model construction to establish completeness of a quasi-equational axiomatization
for a variation on the latter logic. In particular, instead of considering truth values in R,
we restrict our attention to the set R<y of non-negative real numbers, where 0 is considered
the designated truth value, and the strictly negative numbers represent increasing degrees of
falsehood. Alternatively, truth values can be taken from the open-closed unit interval (0,1],
with the operations min, - (multiplication), and 1.

Semantics. Formulas ¢,1, x,... are defined over a countably infinite set of propositional
variables P with respect to a language with binary operation symbols A and &, unary operation
symbol O, and constant symbol e. We also define Op := e and (n+ 1) = np @ ¢ for n € N.
An equation is an ordered pair of formulas, written ¢ =~ 1, and ¢ < 1 abbreviates p A Y ~ .

Let R<g be the algebra (R<p,min,+,0). A K(R<g)-model 9 = (W, R,V) consists of a
non-empty set of worlds W, an accessibility relation R C W2, and an evaluation map V that
assigns to each p € P a function V(p): W — R<. The value [¢](w) of a formula ¢ in 9 at a
world w € W is defined recursively as follows:

[p](w) = V(p)(w)
[e] (w)

[v ® x](w) =
(w)

(w)

w

w

0
[¥](w) + [x](w)
[v A X] min([¢](w), [x](w))

[Oy] N{[¥](v) | wRv}.

Note that the meet in the interpretation of boxed formulas does not exist when the set contains
arbitrarily small negative real numbers, and we therefore restrict our attention to models where
this issue does not occur, i.e., models such that [](w) is defined for every formula ¢ and world
w € W. Note also that the empty meet is well-defined and equal to O.

For an equation ¢ = 1), we define

w

w

FrkR<) ¢~ Y = [¢](w) = [¢](w) for every K(R<o)-model (W, R, V) and w € W.
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It is easily proved, along the same lines as the proof for Abelian modal logic in [3], that this
logic admits a finite model property; that is, Fx®r.,) ¢ ~ * if and only if [¢](w) = [¢](w) for
every finite K(R<g)-model (W, R,V) and w € W. Decidability is also easily established, e.g.,
by providing a tableau proof system, again following the methodology of [3].

Axiomatisation. Next we define the target axiomatisation for our modal logic. Let Qugm
denote the quasi-variety of algebras (A4, A, @, e, 0) defined by equations axiomatizing the variety
of meet-semilattice-ordered commutative monoids, together with the (quasi-)equations

o x < e (eis the greatest element);

e t®z<ydz = 1z <y (cancellation);

e nr<ny =—> x <y for each n € Nt (torsion-freeness);
e Dz ® Oy <Oz Dy);

o O(nz) = n(Ox) for each n € N.

We prove the following:

Theorem 1 (Completeness theorem). For any equation ¢ =~ 1,
FkR) ¢ Y <=  Qum Fp=.

Canonical model construction. Recall that in classical modal logic the canonical model
has as its worlds maximally consistent sets of formulas, or, equivalently, ultrafilters of the free
Boolean algebra [1]. These are in one-to-one correspondence with homomorphisms from the
free Boolean algebra to the two-element Boolean algebra. Let Fp denote the free algebra of
Omsm over the set of generators P, and F its non-modal reduct. Analogously to the classical
case, we define the set of worlds of our canonical model to be the set of homomorphisms from
F to R<g. We define an accessibility relation R on this set as follows:

hiRhy <= h1(0a) < ha(a) for each a € F,

i.e., for hy to be a successor of hy we request that ho internally “thinks” each a to be more true
than what h; “thinks” about the boxed version Oa. The valuation is standard: the value of
p € P in a world h is defined to be h(p); that is, V(p)(h) :== h(p).

We need two main results in order to establish the completeness theorem: a truth lemma and
what we will call a separation lemma. As usual, the truth lemma states that the values a world
h internally assigns to elements of F (essentially formulas), equals the “external” truth-value
of the associated formulas in that world h. The separation lemma resembles the Lindenbaum
lemma: given two distinct elements of F (essentially two non-equivalent formulas), we need to
produce a world h that separates these, i.e., assigns them distinct values.

In both cases, we construct a homomorphism h: F — R« by first defining a homomorphism
g from a certain freely generated non-modal algebra A to R<p. This A is defined in such a
way that it admits F as a quotient. By ensuring that g factors through this quotient map, we
find the desired homomorphism h. The proof that there exists a morphism g with the required
properties makes use of Farkas’ lemma from linear algebra. This is combined with topological
techniques to reduce infinite sets of requirements to finite ones that differ between the two
lemmata.

Lemma 2 (Separation lemma). Let a,b € Fo with a £ b. Then there exists a homomorphism
h: F — R<g such that h(a) > h(b).
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In particular, if @ # b, then there exists a homomorphism h: F — R<g such that h(a) # h(b).

Lemma 3 (Truth lemma). Let h be a world in the canonical model, and ¢ a formula. Then
[¢l(h) = (hoq)(p), where q denotes the natural quotient-map from the set of formulas to F.

As usual, the proof of the Truth lemma proceeds by induction on ¢. The cases for e, A, and
@® are routine, and for O the inequality [O¢](h) < (hoq)(Oy) follows from the definition of R.
For the converse, we need to find a witness b’ that is a successor of h such that (b’ o q)(¢) =
(h o q)(Op). The requirement that h’ is a successor of h amounts to the requirement that
h(a) < K (a) for all a, so we find an infinite system of requirements. Using a topological
compactness argument we reduce this to finitely many requirements, so that we can employ
Farkas’ lemma in order to find the desired A’

Together, the Separation lemma and Truth lemma imply that Fg embeds into the complex
algebra of the canonical model. Hence, our construction can be seen as a representation theorem,
albeit only for the free algebra Fg. In particular, this shows that any generalised quasi-equation
valid in the complex algebra of the canonical model gives rise to an admissible rule in the logic.
Restricting attention to equations, the completeness part of the Completeness theorem follows,
ie., Frme,) ¥ ~ ¢ implies Qmsm = ¢ ~ 9. For soundness, it is easy to check that any complex
algebra satisfies all the quasi-equations in the axiomatisation.

Future work. The results presented here represent a first step in an effort to obtain canonical
models for real-valued modal logics, in particular Abelian modal logic and FLukasiewicz modal
logic, with a view to establishing completeness results for suitable axiomatizations. A further
step towards this goal would be to investigate either the logic considered in this work, or the
corresponding fragment of Abelian modal logic studied in [5], extended with the binary join
operator V (interpreted as max in R). However, it is currently unclear how to adapt the
applications of Farkas’ lemma in our proofs to deal with joins.
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