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A term s is a generalization of a term t if ¢ can be obtained from s by variable substitution.
The problem of identifying common generalizations for two or more terms has been the focus of
substantial research, initiated in a series of papers by Plotkin [6], Popplestone [7], and Reynolds
[8], all collected in the same volume published in 1970. The objective of these initial papers was
to formalize an abstraction of the process of inductive reasoning. The main idea in this context
is to find the solutions, i.e., the generalizing terms, that are as close as possible to the initial
terms that define the problem. The existence and cardinality of this set of “best” solutions is
encoded in what is called generalization type, which is a main object of study in this topic.

We provide a novel foundational approach to equational generalization, i.e., where terms are
understood to be equivalent up to an equational theory. The extension to generalization up to
equational theories has been considered by several authors in theoretical computer science, and
there is a growing interest in a general, foundational approach (see the recent survey [3]). We
observe that relevant results so far have been obtained with ad hoc techniques developed for the
specific equational theory under consideration (see e.g. results on semirings [1] and idempotent
operations [2]).

The collection of methods developed to compute solutions to a generalization problem of-
ten goes under the name of anti-unification. This terminology suggests a connection between
generalization and the arguably better known wnification problems, where one seeks common
instantiations to pairs of given terms. Our approach is indeed inspired by Ghilardi’s algebraic
setting for the study of equational unification problems [4].

Generally speaking, our methods are those of universal algebra, which is a most natural en-
vironment to handle equational theories from the side of their classes of models, i.e., varieties.
In more detail, we first introduce a purely algebraic representation of equational generalization
problems (called e-generalization problems from now on) and their solutions; secondly, we de-
velop a universal-algebraic methodology for studying the e-generalization type, applying it in
particular to (algebraizable) logics, where the considered equational theory is that of logical
equivalence.

We show that e-generalization problems always have a best solutions (i.e., unitary type), in
the following varieties: (abelian) groups, (commutative) semigroups and monoids; all varieties
whose 1-generated free algebra is trivial, e.g., lattices, semilattices, varieties without constants
whose operations are idempotent; Boolean algebras, Kleene algebras and Godel algebras, which
are the equivalent algebraic semantics of, respectively, classical, 3-valued Kleene, and Godel-
Dummett logic.

1 Symbolic e-generalization

The following definition of an e-generalization problem corresponds to the usual one used in
the literature, just rephrased in the context of varieties and their free algebras; we only observe
that while in the literature e-generalization problems are often considered to be just a pair of
terms, we here consider the more general case of allowing a finite set of terms of any cardinality.
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Definition 1. A symbolic e-generalization problem for a variety V is a finite set t of terms
t1,...,tm € Fy(X) for some finite set of variables X. A solution (or generalizer) is a term s €
Fv(Y), withY = Var(s), for which there exist substitutions o1, ..., 0, such thatV |= ok (s) = ty
for allk =1,...,m. In this case we say that s is witnessed (or testified) by o1,...,0m.

Any symbolic generalization problem t1,...,%, always has a solution: a fresh variable z,
testified by the obvious substitutions oy (z) = t; for k = 1,...,m. This is the most general
solution for t1, ..., t,, in the sense that every other solution can be obtained from it by further
substitution. In this context the interesting solutions are the least general ones, that are as close
as possible to the initial terms representing the problem. Let us make these notions precise.

Consider two terms over the same language s and wu; we say that s is less general than u,
and write

s = u, iff there exists a substitution o such that o(u) = s. (1)

Let us then fix a problem t C Fy(X) and let .(t) be the set of its solutions; < is a preorder on
Z(t). With a slight abuse of notation we denote by (. (t), <) its associated poset of equally
general solutions, that we call the generality poset of t. Given a symbolic e-generalization
problem t, its e-generalization type is either: unitary, finitary, infinitary, or nullary, depending
on the cardinality of any minimal (complete) set of solutions in (- (t), <).

Given a variety V, its symbolic e-generalization type is the worst possible type occurring
among all its e-generalization problems, the best-to-worst order being: unitary > finitary >
infinitary > nullary.

2 Algebraic e-generalization

The algebraic translation of e-generalization problems uses projective and exact algebras in the
considered variety. Let us call an algebra A a retract of an algebra F if there are homomorphisms
i:A—F,j:F — Asuchthat joi = ida (and then necessarily i is injective and j is surjective);
in this case we say that A is an (i, j)-retract of F.

Consider a variety V. An algebra P € V is projective in V if it is a retract of a free algebra
in V; an algebra E € V is called ezact in V if it is isomorphic to a finitely generated subalgebra
of some (finitely generated) free algebra. Evocatively, if we consider an exact algebra that is
(isomorphic to) a subalgebra of a free algebra Fy (X) generated by a term ¢, we write it as E(t).

The key idea that makes our translation works is to see the terms tq,...,t,, representing
the problem as a single element (t1,...,tm) of the direct product of the exact algebras E(ty);
it will be convenient to represent this tuple as the image of a fresh variable z via some map,
which extends to a homomorphism on the 1-generated algebra in the associated variety, Fy(z).

Definition 2. We call an algebraic e-generalization problem for a variety V. a homomorphism
h:Fv(z) — [1ie, Ex for some m > 1, where each Ey, is an ezact algebra in V.

A solution (or generalizer) for h is any homomorphism g : Fy(z) — P, where P is finitely
generated and projective in V, for which there exists a homomorphism f: P — [[;-, Ej, such
that f o g = h, as illustrated in the following diagram:

m

Fv(z) —h> H Ek
k=1
g
f
P
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We say that f witnesses or testifies the solution g.

Let us define a generality order among algebraic solutions. Fix an algebraic problem h :
Fv(z) = [1i~, Ex. Given two generalizers g : Fy(z) — P, ¢’ : Fy(z) — P’, we say that g is
less general than ¢’ and we write

g C ¢ if and only if there exists h : P’ — P such that ho g’ = g. (2)

The relation C is easily checked to be a preorder on the set of generalizers for h. We
write (&7 (h),C) for the corresponding poset of equally general generalizers. The algebraic
e-generalization type of a problem is then given in complete analogy with the symbolic case,
by checking the cardinality of a minimal complete set of solutions; similarly, one can define the
algebraic e-generalization type of a variety as the worst possible type of its problems.

Let us now discuss how to translate back and forth between symbolic and algebraic problems
and solutions. Let t = {t1,...,tn} € Fy(X) be a symbolic e-generalization problem for a
variety V, and s € Fy(Y) be a solution. Let us define Alg(t) and Alg(s) as the (unique)
homomorphisms extending the following assignments:

Alg(t): z € Fy(z) > (tr,....tm) € [[ Elts),
k=1
Alg(s): z € Fy(z) —— seFy(Y).

Conversely, let h: Fy(z) — [[;—, Ex be an algebraic e-generalization problem, where each Ej,
embeds via a homomorphism ey, to some free algebra Fy (X}); consider a solution g : Fy(z) — P,
where P is an (i, j)-retract of Fy(Y'). Let pj be the k-th projection on [];-, Ej, we define:

Sym(h) = {ti,...,tm}, where t; =eropioh(z)for k=1,...m;
Sym(g) = (iog)(z) € Fy(Y).
We can prove the following.

Theorem 3. A symbolic e-generalization problem t C Fy(X) has a term s € Fy(Y') as solution
if and only if Alg(s) is a solution to Alg(t); conversely, an algebraic e-generalization problem
h:Fy(z) = [1i—, Ex has a homomorphism g : Fy(z) — P as a solution if and only if Sym(g)
is a solution to Sym(h).

Corollary 4. Given a variety V, its symbolic and algebraic e-generalization types coincide.

3 E-generalization type via congruences

After developing the general theory, we take advantage of some basic universal-algebraic tools,
and develop a methodology based on the study of the congruence lattice of the 1-generated free
algebra in the considered variety. In particular, we identify a class of varieties where the study
of the generality type can be fully reduced to the study of this congruence lattice. Let us first
transfer the notions of projective and exact from algebras to congruences: we call a congruence
0 of a free algebra Fy(X) projective (or exact) if F\/(X)/6 is projective (or exact) in V.

Definition 5. We say that an algebra S in a variety V is strongly projective in V if it is
projective in V, and whenever there is an embedding i : S — P, for some projective algebra P,
there is a homomorphism j : P — S such that j oi = idg. We say that a variety V is 1ESP if
all 1-generated exact algebras in V are strongly projective in V.
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Given any e-generalization problem h, let us call 4(h) the set of all congruences that appear
as kernels of its solutions; in other words, ¢(h) is the image under the function ker of the set
7 (h), given by all solutions to h: ¥ (h) = ker[«Z(h)]. In varieties such that every 1-generated
exact algebra is (strongly) projective, one can show that:

& (h) = {0 € Con(Fy(z)) : 8 C ker(h), 0 projective in V}.

Theorem 6. Let V be a 1ESP variety, and consider an algebraic e-generalization problem h.
Its poset of solutions <7 (h) is dually isomorphic to the poset of congruences in 4 (h).

Using this theorem, one can show that both Boolean and Kleene algebras have unitary e-
generalization type, as well as all varieties whose 1-generated free algebra is trivial, e.g., lattices,
semilattices, varieties without constants whose operations are idempotent.

Finally, we identify a sufficient condition for a problem, and for a variety, to have unitary
e-generalization type.

Theorem 7. Let h: Fy(z) — [[,-, Ex be an algebraic e-generalization problem. If ker(h) is
projective then the e-generalization type of h is unitary.

Corollary 8. IfV is a variety for which finite intersections of exact congruences of Fy(z) are
projective, then V has unitary e-generalization type.

As a consequence, one can see that the following varieties have unitary e-generalization type:
(abelian) groups, (commutative) semigroups and monoids, Godel algebras.
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