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1 Introduction

We study the cardinalities of intervals of modal and superintuitionistic logics (si-logics for
short). This cardinality cannot be more than the continuum as we assume that our language is
countable, and in a countable language we cannot have more than a continuum of logics (which
are special sets of formulas). Recall that for modal or si-logics L1 and L2 the interval [L1, L2]
is the set

[L1, L2] = {L : L1 ⊆ L ⊆ L2}.

These intervals are, clearly, not linearly ordered.
It was first shown by Jankov [6] that there are continuum many si-logics. Therefore, the

intervals [IPC, Inconsist] and [IPC,CPC], where IPC and CPC are intuitionistic and classical
propositional calculi, respectfully, and Inconsist is the inconsistent logic, have the cardinalities
that of the continuum. This was obtained by constructing an antichain of finite subdirectly
irreducible Heyitng algebras (alternatively, finite rooted posets) with respect to homomorphic
image of a subalgebra order (alternatively, p-morphic image of an upset) and by associating to
each such finite algebra the so-called Jankov formula, a variant of the diagram of this algebra
[6], see also [1]. These results have been generalized to modal logics by Fine [4] and Rautenberg
[8] (see [3, Chapter 9] for an overview). For example, the intervals [S4, Inconsist] and [K4, S4]
have the cardinality that of the continuum. It is also known that there are some intervals that
are finite, e.g., extensions of any tabular transitive modal or si-logic and countably infinite, e.g,
the intervals [S4.3, Inconsist] or [LC, Inconsist] (see e.g., [3]).

It was posed as an open problem, only very recently in [5], whether it can be proved without
assuming the Continuum Hypothesis (CH) that each interval of modal logics has the cardinality
which is countable or that of the continuum. In particular, suppose that for modal or si-logics
L1 and L2, the interval [L1, L2] is not countable, then is the cardinality of this interval that of
the continuum, without the use of the CH? This question was triggered by investigations into
the degrees of the finite model property (the FMP). This concept was defined in [5] and it was
shown that the degree of the FMP of each transitive modal or si-logic can be any finite cardinal,
ℵ0 or 2ℵ0 . With the CH this implies that any cardinality ≤ 2ℵ0 can be the degree of the FMP
for some transitive modal or si-logic. Because of this, this result was called the Antidichotomy
theorem. It was also shown in [5] that the degrees of the FMP for these logics always form an
interval.

In this paper, we resolve this open problem affirmatively. We prove this by using techniques
from descriptive set theory (see e.g., [7, Section 12]). Specifically, we represent the set of
propositional variables as natural numbers and logics as reals. Then sets of logics correspond to
some sets of real numbers. We show that for any interval of modal or si-logics the corresponding
set of reals is Π0

1
, in particular, it is a Borel set. It is a classical result in descriptive set theory



that every Borel set has the perfect set property [7]. Thus, the cardinality of such a set is either
countable or continuum. As a result, we obtain that every uncountable interval of logics has
the cardinality that of the continuum, and the degree of FMP of any transitive modal logic
or si-logic can be only any finite cardinal, ℵ0 or 2ℵ0 without assuming the CH. This gives the
solution to our problem. We also provide a direct proof showing that the degree of FMP in
the lattice of normal extensions of any normal modal logic is Π0

2
, so the cardinality result also

holds for non-transitive modal logics.

As far as we are aware, this perspective on the study of intervals of logics has not been
explored before.

2 Main results and proof sketches

We will now move to formal details.

Definition 1. Let L0 be a normal modal logic.

1. Let NExtL0 be the lattice consisting of all normal extensions of L0, namely all normal
logics containing L0, with the order ⊆.

2. Given L1 ∈ NExtL0, let

[L0, L1] = {L normal logic : L0 ⊆ L ⊆ L1} = {L ∈ NExtL0 : L ⊆ L1}.

3. Let FFr be the set of all finite Kripke frames. For L ∈ NExtL0, let FFr(L) = {F ∈ FFr :
F � L}, and fmpL0

(L) = {L′ ∈ NExtL0 : FFr(L′) = FFr(L)}.

4. The degree of fmp of L in NExtL0 is the cardinality of the set fmpL0
(L).

Remark 2. These definitions also apply to si-logics.

Our central observation is that we can identify formulas with natural numbers, logics (which
are sets of formulas) with real numbers, and intervals (which are sets of logics) with sets of reals.
Since there are countably many proportional variables, we can encode modal formulas in an
effective way, that is, Fml = {i ∈ ω : i is a code of a modal formula} is recursive. φi will denote
the formula with code i. Similarly, given some A ⊆ Fml, let LA = {φi : i ∈ A}. Note that
every formula has a unique code and every logic has a unique set of codes. Explicitly, we have
i ∈ Fml and φi ∈ L iff i ∈ A, for all i ∈ ω. We further identify subsets of ω with reals, namely,
elements in the Cantor space 2ω in the canonical way. Under this identification, in particular,
logics correspond to elements of 2ω, and sets of logics to subsets of 2ω.

This allows us to investigate the arithmetical and Borel complexity of sets of logics, viewed
as sets of reals, and apply facts from descriptive set theory (see e.g., [7, Section 12]).

Definition 3. Let f, g ∈ 2ω. f ⊕ g ∈ 2ω is defined by

(f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n+ 1) = g(n), for all n ∈ ω.

Lemma 4. Let L1 ∈ NExtL0 and A1 ⊆ Fml be the code of L1. Let [A0, A1] = {A ⊆ Fml :
LA ∈ [L0, L1]}. Then [A0, A1] ∈ Π0

1
(A0 ⊕A1). Moreover, if L0 is recursively axiomatizable and

L1 is decidable, then [A0, A1] ∈ Π0

1
.
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Proof Idea. The set [A0, A1] ⊆ 2ω can be defined by a Π0

1
formula with parameters

A0, A1. For example, for A ⊆ Fml, being closed under necessitation is characterized
by ∀i∀j(Nec(i, j) ∧ j ∈ A → i ∈ A), where Nec(x, y) is a recursive relation such that
Nec(i, j) iff i, j ∈ Fml and φi is of the form ✷φj ; being an extension of A0 is characterized by
∀i(i ∈ A0 → i ∈ A).

If L0 is recursively axiomatizable, then A0 is recursively enumerable, so there is some recur-
sive R such that A0 = {i ∈ ω : ∃jR(i, j)}. Then, in the defining formula, i ∈ A0 can be replaced
by ∃jR(i, j). Similarly, if L1 is decidable, i ∈ A1 can be replaced by a recursive predicate R′(i).
These changes keep the formula Π0

1
and eliminate the parameters.

Thus, for any interval of modal or si-logics, the corresponding set of reals isΠ0

1
, in particular,

it is a Borel set. It is a classical result in descriptive set theory that every Borel set has the
perfect set property [7]. It follows that the cardinality of such a set is either countable or that
of the continuum. As a result, we obtain the main theorem.

Theorem 5. Let L1 ∈ NExtL0 and A1 ⊆ Fml be the code of L1. Then [L0, L1] has the
cardinality either countable or that of the continuum.

The theorem applies to si-logics with straightforwardly adjusted proofs. The next corollary
follows from the fact that fmpL0

(L) always form an interval in transitive modal logics or si-logics,
which was shown in [5]. This gives the solution to our problem.

Corollary 6.

1. Let L0 be a transitive modal logic, i.e., a normal modal logic containing K4. Let L ∈
NExtL0. Then fmpL0

(L) has the cardinality either countable or that of the continuum.

2. Let L be a si-logic. Then fmp(L) (in the lattice of si-logics) has the cardinality either
countable or that of the continuum.

In addition, we generalize the result to non-transitive modal logic L0 by directly character-
izing the complexity of fmpL0

(L).

Lemma 7. Let L ∈ NExtL0 with code A. Let fmpA0
(A) = {A′ ⊆ Fml : LA′ ∈

NExtL0,FFr(LA′) = FFr(L)}. Then fmpA0
(A) ∈ Π0

2
(A0 ⊕ A). Moreover, if L0 and L are

recursively axiomatizable, then fmpA0
(A) ∈ Π0

2
.

Proof Sketch. A finite Kripke frame is a finite set with a binary relation. So, finite Kripke
frames (up to isomorphism) can be coded by natural numbers in an effective way, such that:

1. The set FFr = {f ∈ ω : f is a code of a finite Kripke frame} is recursive.

2. The validity relation Val(f, i) iff f is the code of a finite Kripke frame F and i is the code
of a formula φ and F � φ is recursive.

This enables us to define the set fmpA0
(A) ⊆ 2ω by a Π0

2
formula with parameters A0, A.

The second half of the statement follows by a similar argument in the proof of Lemma 4.

A similar application of the perfect set property of Borel sets gives the next theorem.

Theorem 8. Let L0 be a normal modal logic. For any L ∈ NExtL0 the set fmpL0
(L) has the

cardinality either countable or that of the continuum.
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It is worth noting that these proofs do not use any special properties of modal or si-logics.
Thus, this approach can be employed to investigate cardinalities of sets of other non-classical
logical systems (with a reasonably simple syntax and semantics).

However, not all properties allow such straightforward characterization. A notable example
is the degree of Kripke incompleteness. Although Blok [2] proved that the degree of Kripke
incompleteness in NExtK is either 1 or 2ℵ0 , the situation in other lattices, such as NExtK4 and
NExtS4, remains unknown [3, Problem 10.5]. Given that all Kripke frames form a proper class,
it becomes challenging to reason about Kripke frames using quantifiers over natural numbers
or even reals, in contrast to finite Kripke frames.

We leave open the question of what implications the characterization within the Borel hier-
archy may have for studying logical properties beyond the cardinality argument we presented.
For example, if a logical property P is shown to be Borel, analytic, or belongs precisely to some
complexity class C, what conclusions can we draw about that property in relation to logics?
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