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In his seminal paper [5], in regards to the theory of computation, John McCarthy introduced
a logic for computable functions with the aim of managing undefined assignments, partial pred-
icates, and modeling computational failures. As the order in which programs are executed may
be paramount, the conjunction/disjunction with an undefined value may fail to commute, and
thus yields a non-commutative logic. This paradigm has also found application in the study of
Process Algebras, such as the handling and management of errors in concurrent programming;
for instance in [1] where the operation · in Figure 1 is used for left sequential conjunction.

The first algebraic treatment for a 3-valued semantics of McCarthy’s logic was carried out by
Konikowska in [4], where the following operation tables over a setM3 := {0, 1, ε} are introduced.

′

1 0
0 1
ε ε

+ 1 0 ε
1 1 1 1
0 1 0 ε
ε ε ε ε

· 1 0 ε
1 1 0 ε
0 0 0 0
ε ε ε ε

Figure 1: The operation tables for the algebra M3 := ⟨{0, 1, ε},+, ·, ′, 0, 1⟩.

As Konikowska defines in [4], an algebra ⟨A,+, ·, ′, 0, 1⟩ is called a McCarthy algebra if
it “satisfies all the equational tautologies of a Boolean algebra that hold in” the algebra M3.
From the observation that the two-element Boolean algebra 2 is a subalgebra of M3, we may
restate this, within the parlance of universal algebra, and understand a McCarthy algebra to
be any member in the variety of algebras generated by M3. In this way, let us define M to be
the variety of McCarthy algebras denoting V(M3).

The following properties are readily verified for the algebra M3, and thus also M:

• the operation ′ is an involution, i.e., x′′ ≈ x, through which the constants 0 ≈ 1′ and
1 ≈ 0′ are inter-definable;

• the operations + and · the term-definable from each other through ′ via x+ y ≈ (x′ · y′)′
and x · y ≈ (x′ + y′)

′
, i.e., they satisfy the De Morgan laws;

• the reduct ⟨M3, ·, 1⟩ (thus also ⟨M3,+, 0⟩) is a monoid with an idempotent operation, i.e.,
x · x ≈ x (thus also x+ x ≈ x).

Let us call an algebra ⟨A, ·, ′, 1⟩ an unital band with involution (i-uband for short) if ⟨A, ·, 1⟩
is a unital band (i.e., idempotent monoid) and ′ an involution on A; we write ⟨A,+, ·, ′, 0, 1⟩ to
indicate its term-definable De Morgan dual ⟨A,+, ′, 0⟩ in the signature.
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Theorem 1. There are exactly ten non-isomorphic i-ubands of cardinality 3, exactly four of
which containing 2 as a Boolean subalgebra; the Strong Kleene algebra SK, the Weak Kleene
algebra WK, the McCarthy algebra M3 and its mirror Mop

3 (i.e., where x ·op y := y · x).

While a great deal is known about the Strong and Weak Kleene algebras and the varieties
they generate (see e.g. [2, 3, 6]), little is known about the variety M of McCarthy algebras. In
the same article [4], Konikowska gives a long list of equational identities that are valid for M,
but whether this list forms a complete axiomatization is left open as conjecture. Part of this
research settles this question by both demonstrating that Konikowska’s identities are indeed
complete for M, and also providing a number of equivalent and minimal axiomatizations. We
motivate one such presentation as follows.

For one, the algebra M3 satisfies distributivity from the left:

x · (y + x) ≈ xy + xz (or, equivalently) x+ yz ≈ (x+ y) · (x+ z) (left-distributivity)

However, ⟨M3,+, ·⟩ is not a semiring as distributivity from the right fails in general. But some
instances of this law do hold, in particular the following:

(x+ x′) · y ≈ xy + x′y (or, equivalently) xx′ + y ≈ (x+ y) · (x′ + y) (ortho-distributivity)

Of course, the most glaring identity that fails in M3 is that of commutativity. Thus the monoid
reduct fails to form a semi-lattice. Even worse, ⟨M3,+, ·⟩ is not even a skew-lattice, as the
right-absorption laws are falsified (e.g., 1 ̸= (ε + 1) · 1 = ε). However, M3 does satisfy the
following left-absorption law:

x · (x+ y) ≈ x (or, equivalently) x+ xy ≈ x (left-absorption)

While M3 is not ortho-complemented, i.e., the identity 1 ≈ x+x′ (equivalently, 0 ≈ x ·x′) fails,
it does satisfy a local version with unary term-operations 0x := x · 0 and 1x := x+ 1:

1x ≈ x+ x′
(or, equivalently) 0x ≈ x · x′ (locally complemented)

Lastly, while commutativity generally fails, it does satisfy some instances. In particular for the
local units 1x := x+ 1 and 0x := x · 0:

1x · 1y ≈ 1x · 1y (or, equivalently) 0x + 0y ≈ 0x + 0y (local-unit commutativity)

Definition 2. We call a McCarthy-Konikowska algebra (MK-algebra) any i-uband satisfying
left-distributivity, ortho-distributivity, left-absorption, locally complemented, and local-unit
commutativity. Denote the variety of MK-algebras by MK.

With a good deal of work, we verify the following:

Theorem 3. Konikowska’s axioms [4, (A1–A16) pp. 169] hold in MK.

Among these identities sits that of left-regularity, i.e., xyx ≈ xy. In fact, and while the
derivation is far from trivial, any left-distributive i-uband satisfying local-unit commutativity is
also left-regular. As is well-known, any left-regular operation ∗ admits a partial order ≤∗ defined
via x ≤∗ y iff x ∗ y = y. For MK-algebras, we choose to work with the partial order associated
with the operation +, and will denote it simply by ≤. This fact affords us the following
structure theorem for MK-algebras. First, recall the standard notation ↑a := {x ∈ A : a ≤ x}
and ↓b := {x ∈ A : x ≤ b}, and that of an interval [a, b] := ↑a ∩ ↓b.
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Theorem 4. Let A = ⟨A,+, ·, ′, 0, 1⟩ be an MK-algebra. Define IA := {0a : a ∈ A} and, for
each i ∈ IA, set Bi := [0i, 1i], where 0x := x · 0 and 1x := x+ 1. Then the following hold:

1. ⟨IA,∨, 0⟩ is a join-semilattice with least element 0, where i ∨ j := i+ j.

2. For each i ∈ IA, Ai := ⟨↑0i,+, ·, ′, 0i, 1i⟩ is an MK-algebra and the map hi : x 7→ 0i + x
is a homomorphism from A onto Ai.

3. For each i ∈ IA, the structure Bi := ⟨Bi,+, ·, ′, 0i, 1i⟩ is a Boolean algebra and the set
Bi coincides with {x ∈ A : 0x = 0i}. Consequently, A =

⋃
i∈IA

Bi and the members of
{Bi}i∈IA

are pairwise disjoint.

4. For each i, j ∈ IA with i ≤ j, the map ρij := hi↾Bi is a homomorphism from Bi to Bj.
Moreover, ρii = idBi and ρjk ◦ ρik = ρik for each i ≤ j ≤ k in IA.

This structure theorem allows for a finer analysis of MK-algebras, in particular those that are
subdirectly irreducible, and ultimately serves as the linchpin for the following characterization.

Theorem 5. The only subdirectly irreducible MK-algebras are the two-element Boolean algebra
2 and the 3-element MK-algebra M3.

As every variety of algebras is generated by its subdirectly irreducible members, and 2 is a
subalgebra of M3, we immediately obtain the following as a corollary to Theorem 5.

Corollary 6. The variety of MK-algebras is generated by the algebra M3. Consequently, the
variety of McCarthy algebras coincides with MK.

References

[1] J. A. Bergstra and A. Ponse. Bochvar-McCarthy Logic and Process Algebra. Notre Dame Journal
of Formal Logic, 39(4):464–484, 1998.

[2] S. Bonzio, F. Paoli, and M. Pra Baldi. Logics of Variable Inclusion. Springer, Trends in Logic,
2022.

[3] J. Kalman. Lattices with involution. Transactions of the American Mathematical Society, 87(2):485–
491, 1958.

[4] B. Konikowska. McCarthy Algebras: A model of McCarthy’s logical calculus. Fundamenta Infor-
maticae, 26(2):167–203, 1996.

[5] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal Systems, volume 26 of Studies in Logic and the Foun-
dations of Mathematics, pages 33–70. Elsevier, 1959.

[6] A. Urquhart. Basic Many-Valued Logic, pages 249–295. Springer Netherlands, Dordrecht, 2001.

3


