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Holder’s theorem [3, 5, 6], one of the early classical results about ordered groups, states that
a totally ordered group embeds into the additive ordered group of reals R if and only if it is
Archimedean (informally speaking, if and only if it lacks infinitesimal elements). The ordered
group R which features in Holder’s theorem lives in the variety of lattice-ordered groups, which
is one of the most prominent varieties of residuated lattices. A fruitful research programme in
this area has been to extend results about lattice-ordered groups to wider classes of residuated
lattices [1]. Two important classes for this purpose are the variety of GBL-algebras and its
subvariety of GMV-algebras [2]. These significantly extend the variety of lattice-ordered groups
while still preserving some group-like behavior. In particular, in their study of the Archimedean
property in residuated lattices, Ledda, Paoli and Tsinakis [4] recently extended Holder’s theorem
to GBL-algebras, characterizing the subalgebras of the GMV-algebras R, R™, and [0,1] as
precisely the strongly simple GBL-algebras (see below for more details). In the present work,
we further extend Holder’s theorem beyond the residuated setting, obtaining a result in the
spirit of [4] for totally ordered monoids which gives an abstract characterization of the dense
subalgebras of the totally ordered monoids R, R™, and [0, 1].

Some definitions will be needed to state these results. A lattice-ordered monoid, or £-monoid
for short, is an algebra L = (L, A, V, -, 1) which is both a lattice and a monoid such that products
distribute over binary meets and binary joins. An f-monoid is integral if the monoidal unit 1
is the top element of the lattice reduct. A totally ordered monoid, or tomonoid for short, is an
f-monoid whose lattice reduct is totally ordered. A residuated lattice is an f-monoid equipped
with binary operations \ and / such that

y<z\z <= z-y<z < z<z/y.
A GBL-algebra is a residuated lattice satisfying the divisibility equations

2(2\(x Ay) =2 Ay = ((x Ay) o).

A GMV-algebra is a residuated lattice satisfying the stronger equations

z/((zVy\e) =z Vy = (z/(xVy)\s.

The variety of GMV-algebras in particular subsumes the varieties of ¢-groups and MV-algebras.
Key examples of commutative GMV-algebras are the additive ¢-group of the reals R, its negative
cone R~ (an integral cancellative residuated lattice), and the standard MV-chain [0, 1]. These
GMV-algebras have some important subalgebras: the additive ¢-group of the integers Z, its
negative cone Z~, and the subalgebras L,, of [0, 1] with the universes {O/n, 1/n,...,7/n} forn > 1.
We use Lj to denote the trivial algebra.

A residuated lattice is strongly simple if it has no non-trivial proper convex subalgebras. It
is strongly semisimple if {1} is the intersection of all maximal proper convex subalgebras. A
commutative residuated lattice is strongly (semi)simple if and only if it is (semi)simple in the
universal algebraic sense.
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Holder’s theorem for GBL-algebras ([4, Theorem 5.6]). A GBL-algebra is strongly simple
if and only if it is isomorphic to one of the following:

(i) a subalgebra of R,
(i) a subalgebra of R,
(iii) a subalgebra of [0,1].
In particular, each strongly simple GBL-algebra is commutative.

We now aim to extend this theorem to totally ordered monoids which are not necessarily
residuated. This will require two modifications.

Firstly, the lattice of convex subalgebra is really a stand-in for the lattice of left congruences,
or equivalently for the lattice of right congruences. A left congruence of an f-monoid L is a
lattice congruence 6 such that {(a,b) € 6 implies (ca, cb) € 0, and a right congruence is a lattice
congruence 6 such that (a,b) € 6 implies (ac,bc) € 6. A left congruence of a residuated lattice
moreover satisfies the condition that (a,b) € 6 implies (c\a, c\b) € 0, while a right congruence
satisfies the condition that (a,b) € € implies (a/c,b/c) € 0. In a residuated lattice, the lattices
of left congruences, of right congruences, and of convex subalgebras are isomorphic. Beyond
the residuated case, we need to explicitly work with the lattices of left and right congruences.

Secondly, as a result of dropping residuation from the signature, we now have more (left and
right) congruences. The strongly simple residuated lattices R, R™, and [0, 1] have no residuated
lattice congruences besides the identity and the total congruence. In contrast, for each non-
empty downset I of [0,1] there is an {-monoidal congruence O(I) such that (a,b) € ©(I) if and
only if either a = b or a,b € I. The same holds for R™. The characteristic condition is no
longer that there are no congruences besides the identity and the total congruence. Rather, it
is that every congruence arises has the form O(I).

More generally, given an ¢-monoid L, a left (right) ideal of L is a non-empty downset I
which is both a lattice ideal (a,b € I implies a Vb € I) and a left (right) ideal of the monoid
reduct: if i €  and a € L, then a-i € L (i-a € L). Each left (right) ideal I of L induces a left
(right) congruence of L as follows:

(a,by € O(I) <= aVi=">bVifor someic€I.

Such congruences will be called left (right) ideal congruences. Notice that in an integral
tomonoid the left (right) ideals are precisely the downsets, and that each left (right) ideal
congruence of a tomonoid has at most one non-trivial congruence class and it is a downset.

An ideal £-monoid is an f-monoid where each non-identity left congruence is a left ideal
congruence and each non-identity right congruence is a right ideal congruence, excluding the
pathological case of ¢-monoids isomorphic to the two-element additive tomonoid {0, 4+o00}. The
following theorem gives a concrete description of ideal tomonoids — or conversely, an abstract
characterization of the dense subtomonoids of R, R™, and [0, 1], just like the previous theorem
gave an abstract characterization of the residuated subtomonoids of R, R™, and [0, 1].

Holder’s theorem for ideal tomonoids. A tomonoid is an ideal tomonoid if and only if it
is isomorphic to one of the following:

(1) Z,
(i) Z7,

(iii) En for somen € N,
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(iv) a dense subtomonoid of R,
(v) a dense subtomonoid of R™,

(vi) a dense subtomonoid of [0, 1].
In particular, each ideal tomonoid is commutative.

The restriction to dense subtomonoids which occurs of the above theorem was already
implicit in Holder’s theorem for GBL-algebras: every subgroup of R and more generally every
residuated sublattice of R, R, and [0, 1] is either dense or isomorphic to Z, Z~, or L,, for some
n € N. In contrast, these algebras have subtomonoids which are neither dense nor isomorphic
to Z, Z—, or L,, and which therefore fail to be ideal tomonoids.

To better understand the role of density, consider the subtomonoid [0,1/2] U {1} of [0, 1].
This is a tomonoid equipped with a drastic multiplication: 1 ® x = = = z ® 1, otherwise
x ®y = 0. In this tomonoid, the principal congruence (1/4,1/2) is not an ideal congruence,
since the equivalence class of 1/2 is the non-singleton interval [1/4,1/2], which is not a downset.
However, had the tomonoid contained for instance the element 9/10, its presence would force
the equivalence class of 1/2 to be the interval [0,1/2] rather than [1/4,1/2].

The problem of describing all ideal /~-monoids, as opposed to merely ideal tomonoids, remains
open. We can, however, describe the finite ideal f-monoids. These coincide with the finite
semisimple GMV-algebras, or in other words with finite MV-algebras.

The following result was first formulated as a conjecture by Peter Jipsen. This conjecture is
where the condition of being an ideal -monoid (more precisely, an ideal join-semilattice-ordered
commutative monoid) was first isolated.

Theorem. Finite ideal £-monoids are precisely the {-monoid reducts of finite M'V-algebras, i.e.
up to isomorphism they are the finite products of the £-monoids L, for n € N.

In particular, all finite ideal /-monoids are reducts of finite GMV-algebras. This does not
hold beyond the finite case. However, every ideal ¢-monoid does satisfy a natural ¢-monoidal
version of the GMV property, namely the last condition in the following equivalence.

Fact. The following are equivalent for every residuated lattice L:

(i) L is a GMV-algebra, i.e. it satisfies the following equations:
z/((@Vvy\e)=azVvy=(z/(zVy))\z.

(i) L satisfies the following implications for z < x < y:

z\z <y\z = y <z, zjx <zly = y<a.

(iii) L satisfies the following implications for z < x < y:

(zu < z implies yu < z) for allu e L = y <z,
(ux < z implies uy < z) forallu e L = y <.
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