Axiomatizing Small Varieties of Periodic \(\ell \)-pregroups

Nick Galatos¹ and Simon Santschi²

Department of Mathematics, University of Denver, USA ngalatos@du.edu

A lattice-ordered pregroup (ℓ -pregroup) is an algebra $(L, \wedge, \vee, \cdot, \ell, r, 1)$ such that (L, \wedge, \vee) is a lattice, $(L, \cdot, 1)$ is a monoid, multiplication preserves the lattice order \leq and for every $a \in L$,

$$a^{\ell}a \leq 1 \leq aa^{\ell}$$
 and $aa^{r} \leq 1 \leq a^{r}a$.

Lattice-ordered pregroups can be seen as a generalization of lattice-ordered groups (ℓ -groups) which have been extensively studied $[1,\ 4,\ 9]$. Indeed, ℓ -groups correspond exactly to the ℓ -pregroups that satisfy $x^{\ell} \approx x^{r}$ and in this case x^{ℓ} is the group inverse operation. On the other hand ℓ -pregroups are a special case of pregroups defined similarly to ℓ -pregroups but without demanding that its underlying order is a lattice. Pregroups where introduced in the context of mathematical linguistics $[2,\ 3,\ 10]$. Moreover, ℓ -pregroups are exactly the residuated lattices that satisfy $(xy)^{\ell} \approx y^{\ell}x^{\ell}$ and $x^{r\ell} \approx x \approx x^{\ell r}$, where $x^{\ell} := x \setminus 1$ and $x^{r} := 1/x$. So the methods developed for residuated lattices and their connection to substructural logics (see e.g., [8]) also apply to ℓ -pregroups.

An ℓ -pregroup is called *distributive* if its lattice reduct is distributive. The variety DLP of distributive ℓ -pregroups was studied in depth in [5] where a Holland-style representation theorem is obtained and shown that DLP has a decidable equational theory.

In this work we will restrict ourselves to periodic ℓ -pregroups. An ℓ -pregroup is called n-periodic for $n \in \mathbb{N}$ if it satisfies the equation $x^{\ell^n} \approx x^{r^n}$. As noted above, 1-preiodic ℓ -pregroups correspond exactly to ℓ -groups. We denote the variety of n-periodic ℓ -pregroups by LP_n . In [7] it was shown that every periodic ℓ -pregroup is distributive. Moreover, in [6] a representation theorem for periodic ℓ -pregroups is obtained and it is shown that the equational theory of LP_n is decidable for each $n \in \mathbb{N}$.

Let $f : \mathbf{P} \to \mathbf{Q}$ and $g : \mathbf{Q} \to \mathbf{P}$ be maps between posets. We say that g is a residual for f and f is a dual residual for g if for all $p \in P$, $q \in Q$,

$$f(p) \le q \iff p \le g(q).$$

The residual and dual residual of a map f are unique if they exist and we denote them by f^r and f^ℓ , respectively. Inductively, we define the nth-order residual if it exists, by $f^{r^1} = f^r$ and $f^{r^{n+1}} = (f^{r^n})^r$ and analogously we define the nth-order dual residual of f.

For a chain Ω we denote by $F(\Omega)$ the set of maps on Ω that have residuals and dual residuals of every order. This set gives rise to a distributive ℓ -pregroup $\mathbf{F}(\Omega) = (F(\Omega), \wedge, \vee, \circ, \ell, r, id_{\Omega})$, where \wedge and \vee are defined point-wise, \circ is functional composition, and id_{Ω} is the identity map on Ω . In [5] it was shown that $\mathbf{F}(\mathbb{Z})$ generates DLP. The subset $F_n(\Omega)$ of $\mathbf{F}(\Omega)$ of the maps that satisfy $f^{r^{\ell}} = f^{r^n}$ forms an n-periodic subalgebra $\mathbf{F}_n(\Omega)$ of $\mathbf{F}(\Omega)$. In contrast to the result about DLP it was shown in [6] that $\mathbf{F}_n(\mathbb{Z})$ does not generate LP_n for any $n \in \mathbb{N}$, but LP_n is generated by $\mathbf{F}_n(\mathbb{Q} \times \mathbb{Z})$ for every $n \in \mathbb{N}$. Nevertheless it was shown that the variety $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is decidable and that $\bigvee_{n \in \mathbb{N}} \mathsf{LP}_n = \bigvee_{n \in \mathbb{N}} \mathbb{V}(\mathbf{F}_n(\mathbb{Z})) = \mathsf{DLP}$, yielding two different ways of approximating DLP with varieties of periodic ℓ -pregroups. A problem left open in [6] is whether the variety $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is finitely axiomatizable. In this work we show that $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is axiomatized relative

² Mathematical Institute, University of Bern, Switzerland simon.santschi@unibe.ch

to LP_n by a single equation. Let us define $x^{[k]} = x^{\ell^{2k}}$ and $\sigma_n = x \wedge x^{[1]} \wedge \ldots \wedge x^{[n-1]}$. For an n-periodic ℓ -pregroup \mathbf{L} and $a \in L$ the element $\sigma_n(a)$ is exactly the minimal invertible element above a. Our main result can now be stated:

Theorem. For each n the variety $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ is axiomatized relative to LP_n by the equation $x\sigma_n(y)^n \approx \sigma_n(y)^n x$.

The theorem is proved in three steps. First we connect the congruence lattice of n-periodic ℓ -pregroups to the congruence lattice of their subalgebra of invertible elements which we call the group skeleton. In fact the group skeleton is exactly the image of the term operation σ_n . Then, using a decomposition theorem for periodic ℓ -pregroup of [6], we characterize the finitely generated subdirectly irreducible n-periodic ℓ -pregroups that satisfy $x\sigma_n(y)^n \approx \sigma_n(y)^n x$ as lexicographic products of a totally ordered abelian group and $\mathbf{F}_k(\mathbb{Z})$, where k devides n. Finally we show that all of these finitely generated subdirectly irreducibles are contained in $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$. In particular, on the way we obtain the following characterizations of (finitely) subdirectly irreducible members of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$.

Corollary. The finitely generated subdirectly irreducible members of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ are exactly the lexicographic producs of a finitely generated totally ordered abelian group and $\mathbf{F}_k(\mathbb{Z})$ for some k that devides n.

Corollary. The finitely subdirectly irreducible members of $\mathbb{V}(\mathbf{F}_n(\mathbb{Z}))$ are exactly the n-periodic ℓ -pregroups whose group skeleton is a totally ordered abelian group.

References

- [1] M. Anderson, T. Feil. Lattice-ordered groups. An introduction. Reidel Texts in the Mathematical Sciences. D. Reidel Publishing Co., Dordrecht, 1988.
- [2] M. Barr. On subgroups of the Lambek pregroup. Theory Appl. Categ. 12 (2004), No. 8, 262–269.
- [3] W. Buszkowski. Pregroups: models and grammars. Relational methods in computer science, 35–49, Lecture Notes in Comput. Sci., 2561, Springer, Berlin, 2002.
- [4] M. Darnel. Theory of lattice-ordered groups. Monographs and Textbooks in Pure and Applied Mathematics, 187. Marcel Dekker, Inc., New York, 1995.
- [5] N. Galatos and I. Gallardo. Distributive ℓ-pregroups: generation and decidability. Journal of Algebra 648, 2024, 9–35.
- [6] N. Galatos and I. Gallardo. Decidability of periodic ℓ-pregroups. Journal of Algebra, accepted.
- [7] N. Galatos, P. Jipsen, Periodic lattice-ordered pregroups are distributive. Algebra Universalis 68 (2012), no. 1-2, 145–150.
- [8] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an algebraic glimpse at substructural logics. Studies in Logic and the Foundations of Mathematics, 151. Elsevier B. V., Amsterdam, 2007. xxii+509 pp.
- [9] V. M. Kopytov, N. Ya. Medvedev. The theory of lattice-ordered groups. Mathematics and its Applications, 307. Kluwer Academic Publishers Group, Dordrecht, 1994.
- [10] J. Lambek. Pregroup grammars and Chomsky's earliest examples. J. Log. Lang. Inf. 17 (2008), no. 2, 141–160.