
Degree of Kripke Incompleteness in Tense Logics

Qian Chen

1 Tsinghua University, Beijing, China

chenq21@mails.tsinghua.edu.cn
2 University of Amsterdam, Amsterdam, The Netherlands.

1 Introduction

Kripke-completeness of modal logics has been extensively studied since 1960s. Thomason [14] established

the existence of Kripke-incomplete tense logics, that is, tense logics which are not complete with respect

to any class of Kripke frames. Later, Fine [9] and van Benthem [15] found examples of Kripke-incomplete

modal logics. Fine [9] raised a question concerning the degree of Kripke-incompleteness of logics in the

lattice NExt(K) of all normal modal logics. In general, for each lattice L of logics and L ∈ L, the degree

of Kripke-incompleteness degL(L) of L in L is defined as:

degL(L) = |{L′ ∈ L : Fr(L′) = Fr(L)}|.1

In other words, the degree of Kripke-incompleteness of L in L is the cardinality of logics in L which share

the same class of Kripke-frames with L. A logic L is strictly Kripke-complete in L if degL(L) = 1. A

celebrated result on Kripke-incompleteness is the dichotomy theorem for degree of Kripke-incompleteness

in NExt(K) by Blok [3]: every modal logic L ∈ NExt(K) is of the degree of Kripke-incompleteness 1 or 2ℵ0 .

This theorem was proved in [3] algebraically by showing that union splittings in NExt(K) are exactly

the consistent strictly Kripke-complete logics and all other consistent logics have the degree 2ℵ0 . A

proof based on Kripke semantics was given later in [4]. This characterization of the degree of Kripke-

incompleteness indicates locations of Kripke-complete logics in the lattice NExt(K).

Further results have been obtained on generalizations of degree of Kripke-incompleteness. The degree

of modal incompleteness with respect to neighborhood semantics was investigated in [8, 11, 5]. Dziobiak

[8] proved the dichotomy theorem for degree of incompleteness in the lattice NExt(D⊕ (2np→ 2n+1p))

w.r.t neighborhood semantics for all n ∈ ω. Litak [11] studied modal incompleteness w.r.t Boolean

algebras with operators (BAOs) and showed the existence of a continuum of neighborhood-incomplete

modal logics extending Grz. For more on modal incompleteness from an algebraic view, we refer the

readers to [12]. Degree of finite model property (FMP) was introduced in [1], where the following anti-

dichotomy theorem for the degree of FMP for extensions of the intuitionistic propositional logic IPC was

proved: for each cardinal κ with 0 < κ ≤ ℵ0 or κ = 2ℵ0 , there exists L ∈ Ext(IPC) such that the degree

of FMP of L in Ext(IPC) is κ. It was also shown in [1] that the anti-dichotomy theorem of the degree of

FMP holds for NExt(K4) and NExt(S4). Degrees of FMP in bi-intuitionistic logics were studied in [7].

It is a longstanding open problem whether Blok’s dichotomy theorem holds for extensions of transitive

modal logics such as K4 and S4, or for extensions of the intuitionistic logic IPC. Since the Blok’s proof

relies on non-transitive frames heavily, we need new technique to solve these problems.

Tense logics are bi-modal logics that include a future-looking necessity modality 2 and a past-looking

possibility modality ■, of which the lattices are substantially different from those of modal logics (see

[10, 14, 13]). However, as far as we know, no characterization of the degree of Kripke-incompleteness

in lattices of tense logics is known. In this work, we study Kripke-incompleteness in tense logics. We

start with the lattice NExt(K4t) of transitive tense logics. Inspired by the proof for Blok’s dichotomy

theorem in [4], we prove the dichotomy theorem for transitive tense logics, that is, every tense logic

L ∈ NExt(K4t) is of degree of Kripke-incompleteness 1 or 2ℵ0 . By a similar argument, we also show that

dichotomy theorem of the degree of Kripke-incompleteness holds for NExt(Kt).

1To simplify notation, we always write degL0
for degNExt(L0)

.



2 Main Results

Let L∗ = K4t ⊕ (3⊤ ∨ ♦⊤) and L◦ = Kt ⊕ (3⊤ ∨ ♦⊤). Our main result is the following theorem:

Theorem 1. Let L ∈ NExt(Kt). Then the following holds:

(1) If L ∈ {Kt, L
◦}, then degKt

(L) = 1. Otherwise degKt
(L) = 2ℵ0 .

(2) Suppose L ∈ NExt(K4t). If L ∈ {K4t, L∗}, then degK4t(L) = 1. Otherwise degK4t(L) = 2ℵ0 .

Dichotomy theorems for tense logics and transitive tense logics follow from Theorem 1. An interesting

corollary is that even the inconsistent tense logic Lt is of degree of Kripke-incompleteness 2ℵ0 , which

means that there are continuum many logics in NExt(K4t) with no Kripke frame.

3 Proof Idea

In what follows, we report on the proof idea of Theorem 1(2) and the main technique used.

Definition 2. A Kripke frame is a pair F = (X,R) where X ̸= ∅ and R ⊆ X ×X. The inverse of R is

defined as R̆ = {⟨v, w⟩ : wRv}. For every w ∈ X, let R[w] = {u ∈ X : wRu} and R̆[w] = {u ∈ X : uRw}.
For every U ⊆W , we define R[U ] =

⋃
x∈U R[x] and R̆[U ] =

⋃
x∈U R̆[x].

For k ≥ 0, we define Rk
♯ [w] by R0

♯ [w] = {w} and Rk+1
♯ [w] = Rk

♯ [w] ∪ R[Rk
♯ [w]] ∪ R̆[Rk

♯ [w]]. Let

Rω
♯ [w] =

⋃
k≥0R

k
♯ [w]. For all binary relation R, we write R+ for its transitive closure.

Intuitively, Rn
♯ [w] is the set of all points which can be reached from w by an (R ∪ R̆)-path of length

no more than n. Models, truth and validity of tense formulas are defined as usual. For each n ∈ ω and

φ ∈ Lt, we define the formula ∆nφ by: ∆0φ = φ and ∆k+1φ = ∆kφ∨3∆kφ∨♦∆kφ. Then the readers

can verify that M, w |= ∆nφ iff M, u |= φ for some u ∈ Rn
♯ [w].

Lemma 3. Let L ∈ NExt(K4t). Then L ∈ {K4t, L∗} implies degK4t(L) = 1.

Proof. By Kripke-completeness of K4t, degK4t(K4t) = 1. To show degK4t(L
∗) = 1, suppose there exists

L′ ∈ NExt(K4t) such that Fr(L′) = Fr(L∗) and L′ ̸= L∗. Since L∗ is Kripke-complete, L′ ⊊ L∗ and so

3⊤ ∨ ♦⊤ ̸∈ L′. Thus ({0},∅) ∈ Fr(L′), which contradicts to Fr(L′) = Fr(L∗).

To prove the second half of Theorem 1(2), we need some auxiliary frame-constructions which can

bring us frames containing long enough zigzags. In what follows, by frames we mean rooted transitive

frames. Let us recall the book-construction of frames from [10, Section 3]. Consider frames F = (X,R)

and G = (Y, S) such that X ∩ Y = {u}. Then H = ((X ∪ Y ), (R ∪ S)+) is a frame such that H↾X ∼= F

and H↾Y ∼= G. Since we can always re-label points in domains of frames, by similar idea, for all frames

F = (X,R), G = (Y, S) and points w ∈ X and u ∈ Y , we can construct the combination ⟨Fw+uG⟩ of

(F, w) and (G, u) by ‘gluing’ F and G at w and u.

Let F = (X,R) be a frame. For any n ∈ Z+ and fixed points w, u ∈ X, the n-pages book Fn
w,u of F is

constructed by combining n copies of F at w and u alternatively. An example of the book construction

is given in Figure 1. It is not hard to verify that F is a t-morphic image of Fn
w,u for each n ∈ Z+. As

a corollary, for all x ∈ X and n ∈ Z+, Th(Fn
w,u, x) ⊆ Th(F, x).2 Moreover, if ⟨w, u⟩ ∈ R \ R̆, then the

book-construction can provide us frames with long enough zigzags. Formally, the following lemma holds:

Lemma 4. Let F = (X,R), w, u ∈ X, Rwu and u ̸∈ R[w]. Let n ∈ ω and G = (Y, S) = F4n+2
w,u . Then

Sn
♯ [x] ̸= Y holds for all x ∈ X.

Now we start to prove the second half of Theorem 1(2). Let L ∈ NExt(K4t) be an arbitrarily

fixed logic such that L ̸∈ {K4t, L∗}. Then L ⊈ L∗. Take any φL ∈ L \L∗. Then we can show that φL is

refuted by some finite non-symmetric frame. By Lemma 4, we can prove the following lemma:

2For all frames F = (X,R) and x ∈ X, we define Th(F, x) = {φ ∈ Lt : F, x |= φ}.
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Figure 1: Examples for the book construction

Lemma 5. There is a finite frame FL and wL, uL ∈ X such that FL, wL ̸|= φL and uL ̸∈ R
md(φ)
♯ [wL].

Let Z♭ = ω \ {0, 1}. For each I ∈ P(Z♭), we define the general frame FI = (XI , RI , PI) as follows:

• XI = XL ⊎ (ω ∪ {i∗ : i ∈ I}).

• RI = (RL ∪ {⟨n,m⟩ ∈ ω × ω : n < m} ∪ {⟨i∗, i⟩ : i ∈ I} ∪ {⟨0, uL⟩})+.

• PI is the tense algebra generated by P(XL).

Example 6. Let P be the set of all prime numbers. Then FP is depicted by Figure 2.

FP

• • •• • •

•• •

0 1 2 3 4 5

5∗3∗2∗

· · ·

FL
R

md(φ)
♯

•
wL •

uL

Figure 2: The frame FP

Let I ∈ P(Z♭) be arbitrarily fixed and take the minimal k ∈ ω such that |FL| < k and XI = RI
k
♯ [v]

for all v ∈ XI . For each n ∈ ω and m ∈ Z♭, we define the formulas γn and γ∗m as follows:

• γ0 = ■⊥ ∧3■2⊥ ∧3k■k+1⊥ and γl+1 = ♦γl ∧■2¬γl.

• γ∗m = 3γm ∧2¬γm−1 ∧■⊥.

Then we can verify that for all n ∈ ω and m ∈ I, the constant formulas γn and γ∗m are true at

exactly points n and m∗, respectively. Let LI = Log(Fr(L) ∪ {FI}). Clearly, LI ⊆ Log(Fr(L)) and so

Fr(L) = Fr(Log(Fr(L))) ⊆ Fr(LI). Note that for all distinct I, J ∈ P(Z♭), LI ̸= LJ . Indeed, take any

I ⊈ J and i ∈ I \ J , we can show that ¬φL → ∆kγ∗i ∈ LI \ LJ . Moreover, we have

Lemma 7. Fr(L) = Fr(LI) for all I ∈ Z♭.

Proof. (Sketch.) Suppose Fr(L) ̸= Fr(LI). Then Fr(L) ⊊ Fr(LI) and there is a frame G = (Y, S) ∈ Fr(LI)

and y ∈ Y such that G, y ̸|= ψ for some ψ ∈ L. Thus FI |= ∃k(γ0∧3γ1) and so ¬ψ → ∃k(γ0∧3γ1) ∈ LI .

Since ψ ∈ L, FI , 0 |= 2(2p→ p) → 2p and FI , 0 |= 2(γi → 3γi+1) for all i ∈ ω, we have

∃k¬ψ ∧ γ0 → (2(2p→ p) → 2p) ∈ LI and {∃k¬ψ ∧ γ0 → 2(γi → 3γi+1) : i ∈ ω} ⊆ LI .
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Since G ̸|= ψ and G |= ¬(γi ↔ γj) for any different i, j ∈ ω, there exists an infinite strict S-chain

⟨ui : i ∈ ω⟩ ⊆ U such that y = u0 and G, ui |= γi for all i ∈ ω. Take any propositional variable p ∈ Prop

which does not occur in ψ. Then we see that G, u0 ̸|= 2(2p → p) → 2p. Hence G ̸|= ∃k¬ψ ∧ γ0 →
(2(2p→ p) → 2p), which contradicts G |= LI .

Since I ∈ P(Z♭) is arbitrarily fixed and |P(Z♭)| = 2ℵ0 , we conclude that degK4t(L) = 2ℵ0 . Note that

L ̸∈ {K4t, L∗} is also chosen arbitrarily, the proof of Theorem 1(2) is concluded.

To show Theorem 1(1), take any L ̸∈ {Kt, L
◦}. Then L ⊈ L◦ and there exists φL ∈ L \ L◦. By the

non-transitive book-construction in [10] or the unrevealing construction introduced in [2], Lemma 5 holds.

For each I ∈ P(Z♭), we define the general frame F′
I = (XI , R

′
I , PI), where RI = RL ∪{⟨n,m⟩ : n < m}∪

{⟨i∗, j⟩ : i ∈ I and i ≤ j} ∪ {⟨0, uL⟩}. By similar arguments, L′
I = Log(Fr(L) ∪ {F′

I}) share the same

frames with L and |{L′
I : I ⊆ Z♭}| = 2ℵ0 .

In fact, Theorem 1 is also a generalization of Blok’s characterization of the degree of Kripke-

incompleteness of modal logics. It follows from [10, Theorem 22] that {Kt, L
◦} and {K4t, L∗} are the

sets of union splittings in NExt(Kt) and NExt(K4t), respectively. Thus we have

Theorem 8. Let L0 ∈ {Kt,K4t} and L ∈ NExt(L0) be consistent. If L is a union splitting in NExt(L0),

then degL0
(L) = 1. Otherwise degL0

(L) = 2ℵ0 .
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