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Abstract

Modal logics offer a valid treatment for temporal and spatial data, which are critical
in modeling many real-world scenarios and, therefore, are becoming more popular by the
day in artificial intelligence applications, specifically when dealing with symbolic machine
learning. Some notable examples are [10, 11], introducing modal logics for treating in-
terval temporal relations and topological (i.e., spatial) relations, respectively. However,
practitioners handling temporal and spatial data typically encounter challenges, as sens-
ing and discretizing signals that often introduce inaccuracies in the data. Fuzzy logics
are renowned as a common approach to deal with uncertainty and unclear boundaries in
the data. Furthermore, Melvin Fitting proposed in [6] a many-valued approach leverag-
ing Heyting algebras to tackle many-expert scenarios, another compelling application in
artificial intelligence. In this talk, we want to present a framework that is general enough
to treat modal many-valued logics, including Fitting’s proposal, and can be endowed with
reasoning tools suitable for real-world applications.

FLew-algebras (Full Lambek calculus with exchange and weakening, see, e.g., [8]) proved
to be a valid candidate, as it generalizes most common algebraic structures of many-valued
logics, such as Gödel algebras (G, for short) [1], MV-algebras [3] (MV) on which  Lukasiewicz
logic is based [12], product algebras (Π) [9], and Heyting algebras (H). FLew-algebras are
bounded integral commutative residuated lattices; i.e., an FLew-algebra A is a lattice ordered
by a partial ordering relation ≤, with a top (1) and a bottom (0) element. When the order
is linear, we use the term FLew-chain. The difference between FLew-algebras and common
bounded lattices is the presence of an internal operation, usually denoted by ·, and assumed
to be commutative, associative and having 1 as a neutral element, usually referred to as t-
norm, that is, such that (A, ·, 1) is a monoid; hence, we will often refer to the multiplication
as the monoidal operation. Intuitively, the multiplication in an FLew-algebra generalizes
the interpretation of the logical conjunction. Moreover, an FLew-algebra is assumed to
have the residuation property, that is, it is assumed that for fixed elements a, b ∈ A, there
exists a unique maximal element x such that a·x ≤ b; this element is denoted by a → b, and
the implication operator → generalizes the logical implication. All commonly used algebras
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in the field of many-valued logics are particular cases of some FLew-algebra (A, ·,→, 1, 0);
each specific case differs from the others in how the monoidal operation is defined.

While modal many-valued logics [4, 6] have already been applied in different contexts,
they are just starting to be studied in depth. Automated theorem proving for modal FLew-
algebra formulas encompassing a many-valued generalization of Halpern and Shoham’s
interval temporal logic [10] has been tackled in [2] using a tableaux system inspired by the
one proposed by Melvin Fitting in [7] and already extended to Heyting Algebras in [5].
When tackling formulas satisfiability and validity in FLew-algebras (and, more generally,
many-valued logics defined over a lattice representing a partial order), the problem can
be relaxed to finding, given a formula φ and a value α in the algebra, if a model exists
such that (resp., for all possible models) the formula has at least value α. This problem is
referred to α-satisfiability (resp. α-validity).

In this work, we propose a different approach leveraging well-known sat and smt solvers,
such as z3, with the hope of gaining better performance while maintaining some sort of
interpretability. In order to do so, one has to translate the α-satisfiability problem to a two-
sorted first-order problem, with a first sort A representing the values in the FLew-algebra
and a second sort W representing the worlds, such that given a formula φ interpreted on an
FLew-algebra A, φ is α-satisfiable if and only if it exists M, w ∈ W so that VM(w, a) ⪰ α.

We provide an accessible and open-source algorithmic tool for (i) defining finite FLew-
algebras, (ii) writing formulas in a specified FLew-algebra, and (iii) asking α-satisfiability
for a given value α in the algebra of the formula through a first-order translation and
making use of a sat or a smt solver, such as z3. This tool is offered as part of a long-term
open-source framework for learning and reasoning, namely Sole.jl1. In particular, the tool
can be found in the ManyValuedLogics submodule of the SoleLogics.jl2 package, which
provides the core data structures and functions for an easy manipulation of propositional,
modal and many-valued logics. For the benefit the reader, the tool is also available in a
standalone repository3, using many-valued Halpern and Shoham’s interval temporal logic
as an example.
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