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Abstract

Toward a more systematic analysis of the several variants of supporting algebras for
various kinds of propositional and modal many-valued logics, FLeq-algebras (Full Lambek
calculus with exchange and weakening, see, e.g., [L1]) were introduced to generalize the most
common algebraic structures, such as Gddel algebras (G, for short) [3], MV-algebras [7]
(MV) on which Lukasiewicz logic is based [16], product algebras (II) [14], and Heyting
algebras (H) that may provide an infinitely-valued interpretation of intuitionistic logic [9,
13,15]. Each of these logics offers unique capabilities that have proven beneficial across
various disciplines, including mathematics, computer science, and particularly artificial
intelligence, where they enhance expressive power and decision-making processes; this is
particularly true in the case of modal many-valued logics [8, 10], which have already been
applied in different contexts but are just starting to be studied in depth.

The structure of FL.,-algebras is of interest for both mathematicians and computer
scientists; indeed, FL.,,-algebras are precisely bounded integral commutative residuated lat-
tices. This means that an FL.,-algebra A is lattice ordered by a partial ordering relation <,
with a top (1) and a bottom (0) element. When the order is linear, we use the term FLe.,-
chain. The additional structure that distinguishes FL.-algebras from common bounded
lattices is given by another internal operation, usually denoted by -, and assumed to be
commutative, associative and having 1 as neutral element, sometimes referred to as t-norm,
that is, such that (A, -, 1) is a monoid; hence, we will often refer to the multiplication as
the monoidal operation. Intuitively, the multiplication in an FL.,-algebra generalizes the
interpretation of the logical conjunction. Moreover, an FL.,-algebra is assumed to have
the residuation property, that is, it is assumed that for any elements a,b € A, there exists
a unique maximal element x such that a -z < b; this element is denoted by a — b, and the
implication operator — generalizes the logical implication. Most commonly used algebras
in the field of fuzzy and many-valued logics are particular cases of some FL.,-algebra
(A,-,—,1,0); each specific case differs from the others in how the monoidal operation is
defined.
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While fuzzy logics are generally based on infinite algebras (typically built on the interval
[0, 1] of real numbers), the finite case is very interesting in practical cases [2]; among other
contexts, datasets in machine learning are finite by definition, naturally leading to finite
descriptions of patterns.

The question of probing a variety of finite algebras in order to count its non-isomorphic
elements is a very natural one. De Baets and Mesiar [4] count the number of different
t-norms that can be built on a chain of length n. Bartusek and Navara [5] solve the
same problem by proposing a tool that actually generates all such ¢-norms. Belohlavek
and Vychodil [6] again answer the question of generating all different residuated lattices,
although, according to their definition, they actually focus on FLe.-algebras of size n.
Finally, Galatos and Jipsen [12] publish the set of all different FL..,-algebras of size up to
6. Notwithstanding, the actual algorithm used for generation is published only in [6], and
no database of FL.-algebras is actually current available for further analysis. Further-
more, no explicit bound for the number of different FL.,,-algebras has been given, and the
numerical results are limited to the published constants.

In this work, we approach, again, the problem of counting and generating all different
FL..-chains of size n, and, in particular: (i) we use a novel approach to this problem based
on a topological interpretation of residuation theory, which shares some similarities with
Scott’s work in domain theory [1,17]; (i) we provide an explicit bound for the number of
different FLe.-chains of size n; (ii3) we provide an accessible and open-source algorithmic
tool for generating and counting FL.,-chains as part of a long-term open-source framework
for learning and reasoning, namely Sole.jl'. In particular, the tool can be found in the
ManyValuedLogics submodule of the SoleLogics.jl*> package, which provides the core data
structures and functions for an easy manipulation of propositional, modal and many-valued
logics. To ease the reader, the tool is also available in a standalone repository®.
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