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1 Bi-Intuitionistic Logic

Definition 1. Let £ = (A,V,—,+,—,~, 1) be a formal algebraic language of signature
(2,2,2,2,1,1,0), called bi-intuitionistic language. Given a sublanguage £1 C L, we denote its
set of formulas built up from a denumerable set of variables {p,q,...} by Fmg,. lf o € Fm,,,
then var(y) denotes the set of variables occurring in ¢. A logic in £ is a finitary consequence
relation F on Fimg, that is also substitution invariant. We write I' - ¢ instead of (T, ¢) € F.
If @ - ¢ then ¢ is called a theorem of -, and we will use the shorthand notation F ¢.

Let Lo € L1 C L be sublanguages. If -1 is a logic in £1, then the Ly-fragment of -1 is the
restriction of 1 to F'mg,. If k¢ is a logic in Ly, then t; is an extension of b if g C ;. If
moreover Lo = £; and there exists ¥ C Fm,, such that

F}_lgO — FUE"(]QD

for all TU{p} C Fmg,, we call -y an aziomatic extension of o. In the case that ¥ = {¢}, we
will sometimes write 1 = ¢ + .

Bi-intuitionistic logic bi-IPC is the conservative extension of intuitionistic logic IPC obtained
by enlarging the intuitionistic language with the connectives <— and ~, called co-implication
and co-negation, and demanding that they behave dually to — and -, respectively. In this
way, bi-IPC achieves a symmetry, which IPC lacks, between the connectives A,—,—, 1 and
V,4,~, T. The Kripke semantics of bi-IPC [10] provides a transparent interpretation of co-
implication: given a Kripke model 0, a point x in 91, and formulas ¢, v, then

MrEpe <= Jy<z(MykEpand My =)

Using this equivalence, the intended behavior of co-negation also becomes clear, because the
formula ~p <> (T « p) is a theorem of bi-IPC.

Equipped with these new connectives, bi-IPC achieves significantly greater expressivity than
IPC. For instance, if the points of a Kripke frame are interpreted as states in time, the language
of bi-IPC is expressive enough to talk about the past, something that is not possible in IPC. In
fact, Godel’s interpretation of IPC into the modal logic S4 can be extended to an interpretation
of bi-IPC into the temporal modal logic tense-S4 [12].

The greater symmetry of bi-IPC with respect to IPC is reflected by the fact that bi-IPC
is algebraized in the sense of [3] by the variety bi-HA of bi-Heyting algebras [9], i.e., Heyting
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algebras whose order duals are also Heyting algebras. As a consequence, we can (and will)
identify bi-IPC with the logic induced by the class of matrices {(A,{1}): A € bi-HA}, and
sometimes denote it by Fpipc. Notably [6], for all T'U {¢} C Fm, we have

T Fpiipc ¢ < if M is a Kripke model, then 9t =T implies M = .

2 Projective Unification

Let Ly be a sublanguage of the bi-intuitionistic language £ and F a logic in L£y. A formula
¢ € Fmg, is said to be unifiable in +- if we have F o(y), for some substitution o. In this case,
o is called a F-unifier of ¢, or simply a unifier of ¢, when the logic I- is clear from the context.
If moreover the language Ly contains the connectives A and —, and ¢ F p < o(p) holds for
every p € var(p), then o is called a projective unifier of .

If o0 and 7 are two unifiers of ¢, we say that o is at least as general as 7, denoted by o < 7,
if there exists a substitution u such that - o(p) <> po 7(p), for every p € var(p). A set E of
unifiers of ¢ is said to be a basis if: for every unifier 7 of ¢, there exists o € F such that o < 7;
and for all 0,0’ € E, if 0 < ¢’ then ¢ = ¢’. In particular, if F = {0} is a one-element basis,
then o is called a most general unifier of . It is easy to see that a projective unifier of ¢ is
always a most general unifier of . We call ¢ unitary if it admits a most general unifier and
projective if it admits a projective unifier. Accordingly, the logic F is said to be unitary (resp.
projective) if every unifiable formula is unitary (resp. projective).

In the first part of this talk, I will present an unpublished joint work with Damiano For-
nasiere and Quentin Gougeon, where we characterized the projective bi-intermediate logics (i.e.,
consistent axiomatic extensions of bi-IPC): they are exactly those which have a theorem of the
form! (= ~)"p — (= ~)"*p, for some n € w. Compare this to [13], where it is shown that the
projective intermediate logics (i.e., consistent axiomatic extensions of IPC) are exactly those
which extend the Gédel-Dummett logic GD = IPC+ (p — ¢) V (¢ — p). And although being
an extension of the bi-intuitionistic Godel-Dummett logic bi-GD = bi-IPC+(p — q) V (¢ — p)
is a sufficient condition for a bi-intermediate logic to be projective (because —~p — (= ~)%p
is a theorem of bi-GD, see [2]), it is not necessary. For example, since (—~)?p — (= ~)3p is a
theorem of bi-IPC + —|((q — p)A(p + q))7 our characterization ensures that this bi-intermediate
logic is projective, but it is not an extension of bi-GD [2].

Semantically, bi-intermediate logics with a theorem of the form (= ~)"p — (=~)"*1p can
be characterized by the property of having a natural bound for the zigzag depth of the Kripke
frames which validate them, a notion that we proceed to explain. If u and v are points in
a Kripke frame §, we say that v can be reached from w after n-many zigzags if there are
T1, Y1y, Ty € Fsuch that u < x1 >y < 9 > Yo < --- < x, > v. We then define, for
every U C 3§, the set (J1)"U of points of § that can be reached from a point in U after n-many
zigzags. Notably, if M = (F, V) is a Kripke model on §, then V((ﬁ N)"Lp) = ({1)"V(p) for all
@ € Fm,. Using this equality, one can easily show that

FEGE~)"p = (=~)"Tp = (1)U = (IN)"T'U for every upset U of F,

and when these conditions are satisfied, we say that § has n-bounded zigzag depth.

That a bi-intermediate logic - with a theorem of the form (= ~)"p — (= ~)"*!p must be
projective already follows from the literature: in [11], it is shown that such logics are exactly
those with a discriminator term, whereas in [5], it is established that for an algebraizable logic

'For n € w and ¢ € Fmg, we define (—~)"¢ recursively by (=~)% := ¢ and (= ~)"F 1y = = (~(=~)"p).
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(in particular, for all bi-intermediate logics), having a discriminator term is a sufficient condition
for projectivity.

In order to prove the converse, i.e., that any projective bi-intermediate logic - must contain
a theorem of the form (—~)"p — (= ~)""1p we introduce for each n € w the formula

9n = (‘! N)”+2p — (ﬁ N)27L+4ﬁ(ﬁ N)"ﬁp7

and prove that I 6, forces = (= ~)2"3p — (= ~)2"+4p. We then assume that I is projective,
so the fact that the formula ¢ := p — —~p is unifiable in F (simply take a substitution that
sends p to T) entails that it must have a projective unifier o. It follows that ¢ - p <+ o(p). By
using the Deduction Theorem for bi-intermediate logics [6], which states that

Doty < Incw(F (~~)"0 =),

for every I' U {¢, ¥} C Fm,, we infer that - (- ~)"p — (p > J(p)), for some n € w. Then,
with a view to contradiction, we assume that ¥ (-~)?""3p — (=~)2"+4p hence ¥ 6, by
above. After some semantical combinatorics, the aforementioned consequence of the Deduction
Theorem, together with ¥ 6,,, is enough to arrive at the desired contradiction.

We also showed that bi-IPC is not unitary, by proving that while the formula p — —~p is
unifiable in bi-IPC, it does not admit a most general unifier.

3 Structural Completeness

Let Ly be a sublanguage of the bi-intuitionistic language £ and F a logic in Ly. A rule is an
expression of the form I'> ¢, where ' U {p} C Fmy, is finite. A rule I'> ¢ is said to be wvalid in
Fif T ¢, and admissible in I if for every substitution o we have that F o[I'] implies - o(¢)
(that is, if a substitution o is a F-unifier of all the formulas in T, then it must also be a F-unifier
of ¢). We denote by 4 I'> ¢ the least (wrt. inclusion) logic in £y containing U (T, ¢). The
logic | is said to be structurally complete if every admissible rule is also valid (the converse
holds in general, by substitution invariance). We denote the least (wrt. inclusion) structurally
complete logic in Ly containing F by Se(l), and call it the structural completeness of .

Let bi-IPC™ be the (A, V, =, ~)-fragment of bi-IPC. A standard and straightforward argument
shows that this is the logic induced by the class of matrices {(A,{1}): A € bi-PDL}, where
bi-PDL denotes the variety of double pseudocomplemented distributive lattices. Notably, this
class of algebras enjoys a restricted version of the celebrated Priestley duality that associates
to each A € bi-PDL its dual bi-p-space A, (see, e.g., [4]). And conversely, to each bi-p-space
X we associate its double pseudocomplemented dual X*. Using this duality, one can show that
the class Mod*(bi-IPC™) of reduced matrix models of bi-IPC™ satisfies the equality

Mod*(bi-IPC™) = {(A,{1}): A € bi-PDL and dp(A.) < 2},

where dp(A.) denotes the depth of the underlying poset of A..

In the second part of this talk, I will present an unpublished joint work with Tommaso
Moraschini, where we proved that, except for the classical propositional calculus CPC, no con-
sistent and locally finite axiomatic extension of bi-IPC™ is structurally complete?. This result
is in sharp contrast with [7], where it is shown that every axiomatic extension of the (A, V,—)-
fragment of IPC must be structurally complete.

2In [1], it is proved that apart from CPC, every bi-intermediate logic is not structurally complete. However,
structural completeness results are very sensitive to changes in signature. Moreover, our methods diverge signif-
icantly, because unlike all the bi-intermediate logics, the axiomatic extensions of bi-IPC™ are not algebraizable.
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Let F be a fixed but arbitrary locally finite axiomatic extension of bi-IPC™. If X is a bi-
p-space, we write X € Mod() when (X*,{1}) € Mod() holds true. Using the equality in
the previous display, we prove that the class FgMod*()gss of finitely generated relatively
subdirectly irreducible reduced matrix models of - can be identified with

{A € bi-PDL: A, € Mod() and A, is a finite connected poset of depth < 2}.

We then interpret [8, Thm. 2.12] within our setting. This result establishes equivalent conditions
for a rule to be admissible in a logic over an arbitrary algebraic language. By making use of the
properties of bi-p-spaces and their morphisms, and the fact that - was assumed to be locally
finite, we derive from the aforementioned interpretation many equivalent conditions for a rule
to be admissible in I, culminating in the following®: the rule I > ¢ is admissible in I iff for
every finite connected poset X of depth < 2 such that X € Mod(l-), there exists ), a finite
poset of depth < 2 satisfying Y € Mod(- + I'> ), and such that X'* is a homomorphic image
of Y*. Finally, we use the previous equivalence to show that Sec(l), the structural completeness
of k-, coincides with Log(K ), the logic induced by the class of matrices

K = {((XWe)* {1}): X € Mod(F) and X is a finite connected poset of depth < 2},

where X' W e denotes the disjoint union of a poset X with a singleton poset. Then, a semantical
argument ensures that if FgMod*(F)rsr contains a matrix (A, {1}) such that the dual bi-
p-space A, is not a singleton (which is the case for every consistent axiomatic extension of
bi-IPC™ distinct from CPC), we have that - & Log(Kr) = Sc(), i.e, that I is not structurally
complete. We are currently working on proving the analogous result for arbitrary (i.e., not
necessarily locally finite) axiomatic extensions of bi-IPC™.
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