
Game semantics for weak depth-bounded approximations

to classical propositional logic

A. Solares-Rojas1∗, O. Majer2, and F. E. Miranda-Perea3†

1 Instituto de Ciencias de la Computación, UBA, Argentina
asrojas@dc.uba.ar

2 Institute of Philosophy, The Czech Academy of Sciences, Czech Republic
ondrej.majer@gmail.com
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Tractable deductive systems approximating classical propositional logic (CPL) have interest in
areas that require models of bounded rationality (see [3]). In a series of papers culminating in
[1], depth-bounded approximations have been studied, which can be intuitively related to the
deduction power of resource-bounded agents. Among these approximations, the so-called weak
ones are defined in terms of the depth of derivations within a KE-KI system, and are decidable
in polynomial time whenever their associated depth is suitably parameterized. The 0-depth
approximation can’t be characterized by a set of finitely valued matrices. So far, two alternative
semantics have been given to characterize that basic approximation and, recursively, all of its
successors. Namely, a modular one and a 3-valued non-deterministic one [1, Sec. 1.3, 1.5].
Both are well motivated and intuitive for the 0-depth approximation, though not necessarily
for those of greater depth. In this work, we introduce a game semantics which in our opinion
provides a more intuitive framework for the whole hierarchy of approximations. Namely, we
define a game where negative constraints are associated with understanding the informational
meaning of the connectives, while resource consumption is transparently modeled by the expense
of questions that are within a finite number. Although related to standard dialogical accounts
[4], our question-answer framework seems more intuitive in the context of the approximations.

Proof-theoretical background We work with system NT in Table 1, formulated with
signed formulas of the form TA or FA, meaning that the agent “holds the information that A
is true (respectively, false)” [1, Sec. 2.1]. It results from combining two complete systems for
CPL: the refutation system KE and the direct-proof system KI; respectively related to, but more
efficient that, Tableaux and truth-tables. Like Natural Deduction, NT has introduction and
elimination rules, though ones that are non-branching and involve only information practically
available to the agent and with which she can operate. The only branching rule implements the
Principle of Bivalence (PB), which allows for the introduction of hypothetical information from
no premises and thus can be used anywhere in a derivation. An unrestricted application of PB
isn’t amenable to proof-search, but it can be restricted to applications on the set of subformulas
of the initial assumptions without affecting completeness. In this regard, the introduction rules
can potentially be applied on and on, yielding ever more complex formulas. Yet, they can also
be tamed so as to satisfy the subformula property while preserving completeness.

It’s in terms of the PB rule that a measure of complexity of derivations is introduced.
Namely, a derivation’s depth is defined as the maximum number of nested applications of PB
needed to obtain it. NT is advantageous over KE or KI alone, since it reduces the number of
PB instances required to obtain a derivation and is closer to human reasoning. This generates a

∗Funded by CONICET Postdoctoral Fellowships Program.
†Funded by UNAM-DGAPA-PAPIIT grant IN101723.



Game semantics for weak depth-bounded approximations to CPL Solares-Rojas, Majer and Miranda-Perea

TA
TA ∨ B

FA
FB

FA ∨ B
FA

FA ∧ B

TA
TB

TA ∧ B
FA

TA → B
TB

TA → B

TA
FB

FA → B

TA
F¬A

FA
T¬A

TA ∨ B
FA
TB

FA ∨ B
FA

FA ∧ B
TA
FB

TA ∧ B
TA

TA → B
TA
TB

TA → B
FB
FA

FA → B
TA

FA → B
FB

T¬A
FA

F¬A
TA

TA ∨ A
TA

FA ∧ A
FA

TA FA

Table 1: NT (symmetry of ∨ and ∧ is assumed for brevity)

hierarchy of k-depth approximations to CPL, each one tractable whenever the application of PB
and the introduction rules are restricted to a suitable subset of formulas as conclusions. Less
restrictions on that subset yield deductively more powerful approximations, and tractability
crucially depends on appropriate restrictions thereof.

Negative constraints A valuation is a mapping v from any set of formulas Φ to the set of
values {0, 1, ?}, respectively standing for informational truth, falsity and indeterminacy. These
values are partially ordered by the usual flat relation ⪯, defined as ? ⪯ x and x ⪯ x for
each x ∈ {0, 1, ?}. If v, w are valuations on Φ, then w is a refinement of v, if and only if
v(A) ⪯ w(A) for all A ∈ Φ. It is proper, if there is a B ∈ Φ such that v(B) ≺ w(B). We
introduce concise notation for refinements consisting of changing the value of a single formula:
vA:=x is a refinement of v such that vA:=x(A) = x and vA:=x(B) = v(B) for A,B ∈ Φ, B ̸= A,
x ∈ {0, 1, ? }. The classical truth conditions imposed by, e.g. the standard truth-tables,
are not suitable for the notion of informational truth. For example, if an agent holds the
information that A ∨ B is true, she does not necessarily holds the information that A is true
or that B is true. Similarly for all cases where the reading of the classical truth-table going
from the formula to its components is informationally non-deterministic. This prevents us from
giving a direct definition of admissible valuation. Instead, the negative constraints expressed in
the tables below detect valuations that are inadmissible for any agent who ‘understands’ the
informational meaning of the connectives:

A B A ∨ B

0 0 1

1 ? 0

? 1 0

A B A ∧ B

0 ? 1

? 0 1

1 1 0

A B A → B

1 0 1

0 ? 0

? 1 0

A ¬A

1 1

0 0

An agent who understands this meaning can update her information state by uniquely de-
termining, from her practically available or operational information, the value of formulas that
were previously indeterminate. For example, if she holds that A ∧ B is false and B is true,
then she can update her state with A being false by complying with the tables for negative
constraints, since the refined state with A being true is inadmissible. This ‘local’ task is com-
putationally and cognitively easy.

Basic game Our semantics is defined in terms of a win-lose perfect information game of two
players. An approximation game Gk(Γ, C) is given by a set of formulas Γ, a single formula C
and parameter k ∈ N. In the basic version of the game, we fix the set of formulas available to
the players during the game (the ‘game board’) to the set of subformulas of Γ ∪ {C}, denoted
sub(Γ ∪ {C}). This set constitutes the ‘smallest’ game board. Now, the goal of the first player
called Questioner is to show that C follows from the set of initial assumptions Γ, while the
goal of the second player, Responder, is the opposite. For any i ∈ N, a state Si = (Γi, vi, ni)
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of a game Gk(Γ, C) is given by a set of formulas Γi, a valuation vi : Γi ∪ {C} → {0, 1, ?} and a
parameter ni ≤ k. The valuation vi represents explicit information currently held by Q, which
is updated during the game via admissible refinements. The number ni is a counter for the
number of questions used in the game up to the state Si. At the beginning of a game, i.e. at the
state S0, v0 evaluates all the formulas in Γ to 1, while C and all the formulas in sub(Γ∪{C})\Γ
are evaluated to ?. The value of n0 is set to 0.

Moves The moves in the approximation game consist of admissible (possibly improper) re-
finements of a current valuation. An answer consists of determining the value of some currently
indeterminate formula B, a task that is only allowed if there is a unique admissible proper re-
finement determining B. A question is an explicit request for a determinate value of a formula
A, currently indeterminate. A question itself does not involve a change of the current valua-
tion. An inadmissibility detection means that Q found a currently indeterminate formula such
that each of the two proper refinements making it determinate is inadmissible. It intuitively
corresponds to detecting that the answers given by R, if any, lead to a situation violating the
negative constraints.

Formally, a move is a couple lA, such that A is a formula and l ∈ {0, 1, ?,⋏} is a label.
Sequences of moves are called histories, so h = l1A1 . . . lmAm. We denote by H the set of all
histories and by h ⊑ h′ the relation ‘h is a subsequence of h′’. Let Si = (Γi, vi, ni) be the
current state of a game and hi be the current history, that is the history up to Si. Then a move
lA is legal in Si if and only if it has not been played (i.e. hj lA ̸⊑ hi with j < i) and:

• (question) l =?, ni < k, and at least one of the proper refinements vA:=1
i and vA:=0

i is
admissible, then the game proceeds to Si+1 = (Γi, vi, ni + 1); or

• (answer) l ∈ {0, 1} and there is a unique admissible proper refinement vA:=l
i , then the

game proceeds to Si+1 = (Γi ∪ {A}, vA:=l
i+1 , ni); or

• (inadmissibility) l = ⋏ and neither proper refinement vA:=0
i nor vA:=1

i is admissible,
then the game proceeds to Si+1 = Si (and ends).

Player function The roles of players are not symmetric, the possibilities of R are quite
restricted, since he cannot ask questions and can answer only if Q explicitly asks. In contrast,
Q can ask questions any time and she can also play answers, which can be seen as replies to an
‘implicit’ question Q asks to herself, thus updating her explicit information. Q can also detect
inadmissibility in the sense mentioned above, using the ⋏-move. Formally, the only histories
which are moves for R are those of the form h?A for some h ∈ H. All the other histories,
including the empty one, are moves for Q.

End of the game Winning conditions for Q are simple, either the valuation of the conclusion
C is set to 1 in some move (either by Q or by R) or she detects an inadmissibility. R wins if
Q cannot move any more, which includes the case when she has spent all her k questions. In
contrast, setting the conclusion false does not suffice, for Q might still spot inadmissibility on
a formula in the remaining part of the game. Formally, hi is a terminal history and Si is a
terminal state of the game Gk(Γ, C) iff:

• (conclusion true) hi = hi−11C and consequently vi(C) = 1;

• (inadmissibility detected) hi = hi−1 ⋏ A, and thus neither proper refinement with
vi(A) = 0 nor vi(A) = 1 of vi is admissible;
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• (no moves) hi ̸= hi−1?A,ni = k, and there is no B ∈ Γi for which there is a unique
proper admissible refinement vB:=l

i , l ∈ {0, 1}.

There are no special procedural rules in the basic version of the game. Q starts the game
and then plays answers and questions in an arbitrary order as long as she can, i.e. until the
end of the game is reached. R moves only when asked a question. No player can repeat her/his
moves according to the definition of a legal move.

Correspondence theorem We show that here is a k-depth proof of TC from TΓ in NT
over the sub-bounded (‘analytic’) search space [1, 2.1] if and only if there is a winning strategy
for Q in the basic game Gk(Γ, C).

Adequacy and intuitiveness Some natural liberalizations of the basic version of the game
are, for example: (i) setting a wider ‘board game’, in particular, allowing questions from a
superset of sub(Γ∪{C}); (ii) allowing for controlled move repetition. By contrast, some natural
restrictions are, for instance: (i) Q asks only when she cannot answer herself (corresponding to
pushing PB as down as possible); (ii) questions restricted to atomic formulas. In any case, a
remarkable intuition is that questions are a resource worth keeping! Actually, it is exactly when
Q exploits the information she holds as much as possible that the answers of R correspond only
to the introduction of information that was not even implicitly contained in the information
held by Q.

Thoughtful questions might guarantee a win, while hasty questions correspond to a wasteful
play. Accordingly, question selection is not a trivial task, whose difficulty increases proportion-
ally with the number of questions needed and the freedom on the subset from which these are
selected. The levels of the hierarchy of approximations, under proof-theoretical restrictions,
can intuitively be associated with increasingly better questioners, in terms of their connective-
meaning mastery and their ‘ingenuity’ when selecting questions, under suitable playing freedom.
More liberalized settings are naturally associated with more competent questioners, and thus
with more efficient playing in that the number of questions needed can dramatically decrease.

Strategies by the Questioner arise naturally when balancing her question ‘budget’ with
playing freedom and competence thereof. These strategies intuitively correspond to different
procedures when implementing the background proof-theory.

Finally, we envisage extensions of our semantics to non-classical depth-bounded approxima-
tions, such as FDE [2] and IPL [5], by modifying our game in the spirit of dialogics.
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