On Non-Classical Polyadic Algebras

Nicholas Ferenz¹ and Chun-Yu Lin²

Centre of Philosophy, University of Lisbon, Portugal nicholas.ferenz@gmail.com
Department of Logic, Faculty of Arts, Charles University
Institute of Computer Science of the Czech Academy of Sciences ,Prague chunyumaxlin@gmail.com

Algebraization of logic has been widely studied by logicians ever since G. Boole discovered the connection between classical propositional logic and two-element Boolean-type algebras. Afterwards, A. Mostowski, A. Tarski, and P. Halmos developed the lattice-based [6], cylindric [4], and polyadic [3] algebraization of classical quantified logic, respectively. To further generalize these ideas, researchers have explored the algebraization of nonclassical quantified logics, leading to the development of structures such as polyadic MV-algebras [8], polyadic BL-algebras [2], polyadic Rasiowa-implicative algebras [7] and cylindric Heyting algebras [5].

Following this line of research, we first define polyadic algebras over algebraically-implicative logics [1]. After constructing functional polyadic algebras, we prove the functional representation theorem, which encompasses many known results for non-classical polyadic algebras.

Let's first fix some notations. Give two sets I, J with $J \subseteq I$. We call a mapping $\sigma : I \to I$ a transformation of I and denote the identity transformation by ι . For $\sigma, \tau \in I^I$, $\sigma J \tau$ means that $\sigma(i) = \tau(i)$ for all $i \in J$. That is, σ and τ agrees on J. Also, we denote $\sigma(I \setminus J)\tau$ as $\sigma J_*\tau$, i.e. σ and τ agree on the complement of I. If $\sigma J_*\iota$, we say J supports σ .

Let $\mathcal{L}_{\forall \exists} = \langle \mathcal{O}, \forall, \exists, \mathbf{P}, \mathbf{F}, Var, \rho \rangle$ be a first-order language where $\{\rightarrow\} \subseteq \mathcal{O}$ is a set of propositional connectives, $\mathbf{P}(\mathbf{F})$ is a set of relation (functional) symbols, Var is a set of variables, and $\rho : \mathcal{O} \to \omega$ is an arity function.

Similar to classical polyadic algebra developed by Halmos in [3], we first define polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ - algebra **A** is as

$$\langle A, (\circ^{\mathbf{A}} : \circ \in \mathcal{O}), \forall^{\mathbf{A}}, \exists^{\mathbf{A}}, S^{\mathbf{A}} \rangle$$

where $\circ^{\mathbf{A}}: A^n \to A$ if $\rho(\circ) = n, \forall^{\mathbf{A}}, \exists^{\mathbf{A}}: \mathcal{P}_{\omega}(I) \to A^A$, and $S^{\mathbf{A}}: I^I \to A^A$ such that the following axioms are satisfied:

- $S_{\iota}^{\mathbf{A}}x = x;$
- $S_{\sigma}^{\mathbf{A}}(S_{\tau}^{\mathbf{A}}x) = S_{\sigma\sigma}^{\mathbf{A}}x$, for all $\sigma, \tau \in I^{I}$;
- $S_{\sigma}^{\mathbf{A}}(\diamond^{\mathbf{A}}(x_1,\ldots,x_{\rho(\diamond)})) = \diamond^{\mathbf{A}}(S_{\sigma}^{\mathbf{A}}x_1,\ldots,S_{\sigma}^{\mathbf{A}}x_n)$, for all $\diamond \in \mathcal{O}, \ \sigma \in I^I$;
- $S_{\sigma}^{\mathbf{A}}Q_{J}^{\mathbf{A}}x = S_{\tau}^{\mathbf{A}}Q_{J}^{\mathbf{A}}x$ for all $Q \in \{\forall, \exists\}, \ J \subseteq_{\omega} I$, and $\sigma, \tau \in I^{I}$ such that $\sigma J_{*}\tau$;
- $Q_J^{\mathbf{A}} S_{\sigma}^{\mathbf{A}} x = S_{\sigma}^{\mathbf{A}} Q_{\sigma^{-1}(J)}^{\mathbf{A}} x$ for all $Q \in \{ \forall, \exists \}, J \subseteq_{\omega} I$, and $\sigma, \tau \in I^I$ such that σ is injective on $\sigma^{-1}(J)$.

We then denote L as algebraically-implicative predicate logic with the language $\mathcal{L}_{\forall \exists}$ as in [1]. By lemma 2.9.11 in [1], **A** is an algebra of truth values for L, or an L-algebra, if there is a set of equations \mathcal{E} such that the following quasi-equations hold in **A** for each $\alpha \approx \beta \in \mathcal{E}$:

- $\alpha(\varphi) \approx \beta(\varphi)$, for each axiom φ of L
- $\bigwedge \mathcal{E}[\Gamma] \Rightarrow \alpha(\varphi) \approx \beta(\varphi)$ for each rule $\Gamma \vdash_{\mathcal{L}} \varphi$ of L

• $\bigwedge \mathcal{E}[x \leftrightarrow y] \Rightarrow x \approx y$

Then we define that a polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra **A** is called a polyadic L-algebra if it satisfies the following equations and quasi-equations:

- Axioms of L-algebras;
- Axioms (T1)-(T8) for all $\sigma \in I^I$ and $J \subseteq_{\omega} I$ as in [7].

On the other hands, following the definition in [7], we say a value $\mathcal{L}_{\forall\exists}$ -algebra **V** is an algebra of the form

$$\langle V, (\circ^{\mathbf{V}} : \circ \in \mathcal{O}), \forall^{\mathbf{V}}, \exists^{\mathbf{V}} \rangle$$

where $\circ^{\mathbf{V}}: V^{\rho(\circ)} \to V$ is a $\rho(\circ)$ -ary operation on V for each $\circ \in \mathcal{O}$, and $Q^{\mathbf{V}}: \mathcal{P}(V) \to V$ is a partial unary second-order operation with domain on power set $\mathcal{P}(V)$ of V for each $Q \in \{\forall, \exists\}$.

Therefore, given a value $\mathcal{L}_{\forall \exists}$ -algebra \mathbf{V} and two sets X, I. A functional polyadic $\langle \mathcal{L}, I \rangle$ -algebra $\bar{\mathbf{V}}$ is of the form

$$\langle V^{X^I}, (\circ^{\bar{\mathbf{V}}} : \circ \in \mathcal{O}), \forall^{\bar{\mathbf{V}}}, \exists^{\bar{\mathbf{V}}}, S^{\bar{\mathbf{V}}} \rangle$$

where $\circ^{\bar{\mathbf{V}}}: (V^{X^I})^{\rho(\circ)} \to V^{X^I}, \ \forall^{\bar{\mathbf{V}}}, \exists^{\bar{\mathbf{V}}}: \mathcal{P}_{\omega}(I) \to [V^{X^I}, V^{X^I}], \ \text{and} \ S^{\bar{\mathbf{V}}}: I^I \to End(\mathbf{V}) \ \text{are defined as follows}:$

- $(\circ^{\bar{\mathbf{V}}}(p_1,\ldots,p_{\rho(\circ)}))(\vec{x}) = \circ^{\mathbf{V}}(p_1(\vec{x}),\ldots,p_{\rho(\circ)}(\vec{x}))$ for all $p_1,\ldots,p_{\rho(\circ)} \in V^{X^I}$ and $\vec{x} \in X^I$;
- $(\forall_J^{\mathbf{\bar{V}}}p)(\vec{x}) = \forall^{\mathbf{V}}(\{p(\vec{y}): \vec{x}J_*\vec{y}\})$, for all $p \in V^{X^I}$, $J \subseteq_{\omega} I$, and $\vec{x}, \vec{y} \in X^I$; similarly for $\exists^{\mathbf{\bar{V}}}$
- $(S_{\sigma}^{\bar{\mathbf{V}}}p)(\vec{x}) = p(\sigma_*x)$ where $(\sigma_*\vec{x})_i = (\vec{x})_{\sigma(i)}$ for all $\sigma \in I^I$ and $\vec{x} \in X^I$.

Note that we use $[V^{X^I}, V^{X^I}]$ to denote that $\forall \bar{\mathbf{y}} p$ and $\exists \bar{\mathbf{y}}$ are total functions from X^I to \mathbf{V} . If $\langle V, (\circ^{\mathbf{V}} : \circ \in \mathcal{O}) \rangle \in \mathbf{ALG}^*(\mathbf{L})$, the algebra of reduced models of \mathbf{L} , and $\forall^{\mathbf{V}}$ and $\exists^{\mathbf{V}}$ are respectively the generalized meet and join operations, then we say $\bar{\mathbf{V}}$ is a functional polyadic \mathbf{L} -algebra. We can prove a similar theorem as in [3]:

Theorem 1. Every functional polyadic L-algebra is a polyadic L-algebra.

To see the connection with algebraically-implicative predicate logic, let \mathfrak{M} be a reduced model for L and $P_{\mathfrak{M}}$ is the interpretation of predicate symbols $P \in \mathbf{P}$ in \mathfrak{M} . We can show the following lemma.

Lemma 1. Let $\mathcal{F}(\mathfrak{M})$ be a subalgebra of $\bar{\mathbf{A}}$ (with X = M and I = Var) generated by $\{P_{\mathfrak{M}} \mid P \in \mathbf{P}\}$. Then $\mathcal{F}(\mathfrak{M})$ is a functional polyadic $\langle \mathcal{L}_{\forall \exists}, Var \rangle$ -algebra.

To prove the converse case, it's similar to the classical case that we need to impose some further constrain on the polyadic algebras. We say an element a of a polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra has a finite support $J \subseteq I$ if $S_{\sigma}a = S_{\tau}a$ for all $\sigma, \tau \in I^I$ such that $\sigma J \tau$. A polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra is locally finite if every element has a finite support. Hence, we can prove the following functional representation theorem.

Theorem 2. Every locally finite polyadic L-algebra of infinite dimension is isomorphic to a functional polyadic L-algebra.

As a case study, we investigate the algebraization of first-order relevant logics. Let $\mathcal{L}_{RQ} = \langle \{ \land, \lor, \sim, \circ, 1, \rightarrow \}, Con, Pred, \forall, I, \rho \rangle$ where Con is a set of name constant symbols (i.e. 0-ary functional symbols), Pred is a set of predicate symbols of varying arities, I is a countable set of variables, and ρ is an arity function. A $polyadic \langle \mathcal{L}_{RQ}, I \rangle$ - $De\ Morgan\ Monoid$ is an algebra of the form:

$$A := \langle A; \land, \lor, \sim, \circ, \rightarrow, 1, \langle \forall_J^A \mid J \subseteq_\omega I \rangle, \langle S_\sigma^A \mid \sigma \in I^{(I)} \rangle \rangle$$

that satisfies the following axioms:

- (Poly) Axioms of polyadic $\langle \mathcal{L}_{\forall}, I \rangle$ -algebras
- (DMM) The defining equations of De Morgan Monoids
 - (Q1) $\forall_J 1 = 1$;
 - (Q2) $\forall_J p \leq p$;
 - (Q3) $\forall_J (p \land q) = \forall_J p \land \forall_J q;$
 - (Q4) $\forall_J \forall_J p = \forall_J p = \sim \forall_J \sim \forall_J p$;
 - (Q5) $\forall_J(p \to q) \le (\forall_J p \to \forall_J q);$
 - (Q6) $\forall_J(\forall_J p \to \forall_J q) = \forall_J p \to \forall_J q$;
 - (Q7) $\forall_J (p \lor q) = \sim \forall_J \sim p \lor \forall_J q$.

We can construct functional polyadic De Morgan Monoids similarly. Therefore, we have the following theorem.

Theorem 3. Every functional polyadic $\langle \mathcal{L}_{RQ}, I \rangle$ -De Morgan Monoid is a polyadic $\langle \mathcal{L}_{RQ}, Var \rangle$ -De Morgan Monoid.

References

- [1] Petr Cintula and Carles Noguera. $Logic\ and\ Implication.$ Springer, 2021.
- [2] Dumitru Daniel Drăgulici. Polyadic BL-algebras. a representation theorem. *Journal of Multiple-Valued Logic & Soft Computing*, 16, 2010.
- [3] Paul R. Halmos. Algebraic logic ii. homogeneous locally finite polyadic boolean algebras of infinite degree. *Journal of Symbolic Logic*, 23(2):222–223, 1958.
- [4] Leon Henkin, James D. Monk, and Alfred Tarski. Cylindric algebras. parts. i, ii. Studies in logic and the foundations of mathematics, 115, 1985.
- [5] Jerzy Kotas and August Pieczkowski. On a generalized cylindrical algebra and intuitionistic logic. Studia Logica, 18:73–81, 1966.
- [6] Andrzej Mostowski. Axiomatizability of some many valued predicate calculi. Fundamenta mathematicae, 50:165–190, 1961.
- [7] Don Pigozzi and Antonino Salibra. Polyadic algebras over nonclassical logics. Banach Center Publications, 28(1):51–66, 1993.
- [8] Dietrich Schwartz. Polyadic MV-algebras. Mathematical Logic Quarterly, 26(36):561–564, 1980.