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Algebraization of logic has been widely studied by logicians ever since G. Boole discovered
the connection between classical propositional logic and two-element Boolean-type algebras.
Afterwards, A. Mostowski, A. Tarski, and P. Halmos developed the lattice-based [6], cylindric
[4], and polyadic [3] algebraization of classical quantified logic, respectively. To further gener-
alize these ideas, researchers have explored the algebraization of nonclassical quantified logics,
leading to the development of structures such as polyadic MV-algebras [8], polyadic BL-algebras
[2], polyadic Rasiowa-implicative algebras [7] and cylindric Heyting algebras [5].

Following this line of research, we first define polyadic algebras over algebraically-implicative
logics [1]. After constructing functional polyadic algebras, we prove the functional representa-
tion theorem, which encompasses many known results for non-classical polyadic algebras.

Let’s first fix some notations. Give two sets I, J with J ⊆ I. We call a mapping σ : I → I
a transformation of I and denote the identity transformation by ι. For σ, τ ∈ II , σJτ means
that σ(i) = τ(i) for all i ∈ J . That is, σ and τ agrees on J . Also, we denote σ(I \ J)τ as σJ∗τ ,
i.e. σ and τ agree on the complement of I. If σJ∗ι, we say J supports σ.

Let L∀∃ = ⟨O,∀,∃,P,F, V ar, ρ⟩ be a first-order language where {→} ⊆ O is a set of
propositional connectives, P(F) is a set of relation (functional) symbols, V ar is a set of variables,
and ρ : O → ω is an arity function.

Similar to classical polyadic algebra developed by Halmos in [3], we first define polyadic
⟨L∀∃, I⟩- algebra A is as

⟨A, (◦A : ◦ ∈ O),∀A,∃A, SA⟩

where ◦A : An → A if ρ(◦) = n, ∀A,∃A : Pω(I) → AA, and SA : II → AA such that the
following axioms are satisfied :

• SA
ι x = x;

• SA
σ (SA

τ x) = SA
στx, for all σ, τ ∈ II ;

• SA
σ (◦A(x1, . . . , xρ(◦))) = ◦A(SA

σ x1, . . . , S
A
σ xn), for all ◦ ∈ O, σ ∈ II ;

• SA
σ QA

J x = SA
τ QA

J x for all Q ∈ {∀,∃}, J ⊆ω I, and σ, τ ∈ II such that σJ∗τ ;

• QA
J SA

σ x = SA
σ QA

σ−1(J)x for all Q ∈ {∀,∃}, J ⊆ω I, and σ, τ ∈ II such that σ is injective

on σ−1(J).

We then denote L as algebraically-implicative predicate logic with the language L∀∃ as in
[1]. By lemma 2.9.11 in [1], A is an algebra of truth values for L, or an L-algebra, if there is a
set of equations E such that the following quasi-equations hold in A for each α ≈ β ∈ E :

• α(φ) ≈ β(φ), for each axiom φ of L

•
∧
E [Γ] ⇒ α(φ) ≈ β(φ) for each rule Γ ⊢L φ of L
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•
∧
E [x ↔ y] ⇒ x ≈ y

Then we define that a polyadic ⟨L∀∃, I⟩-algebra A is called a polyadic L-algebra if it satisfies
the following equations and quasi-equations :

• Axioms of L-algebras;

• Axioms (T1)-(T8) for all σ ∈ II and J ⊆ω I as in [7].

On the other hands, following the definition in [7], we say a value L∀∃-algebra V is an
algebra of the form

⟨V, (◦V : ◦ ∈ O),∀V,∃V⟩

where ◦V : V ρ(◦) → V is a ρ(◦)-ary operation on V for each ◦ ∈ O, and QV : P(V ) ⇀ V is a
partial unary second-order operation with domain on power set P(V ) of V for each Q ∈ {∀,∃}.

Therefore, given a value L∀∃-algebra V and two sets X, I. A functional polyadic ⟨L, I⟩-
algebra V̄ is of the form

⟨V XI

, (◦V̄ : ◦ ∈ O),∀V̄,∃V̄, SV̄⟩

where ◦V̄ : (V XI

)ρ(◦) → V XI

, ∀V̄,∃V̄ : Pω(I) → [V XI

, V XI

], and SV̄ : II → End(V) are
defined as follows :

• (◦V̄(p1, . . . , pρ(◦)))(x⃗) = ◦V(p1(x⃗), . . . , pρ(◦)(x⃗)) for all p1, . . . , pρ(◦) ∈ V XI

and x⃗ ∈ XI ;

• (∀V̄J p)(x⃗) = ∀V({p(y⃗) : x⃗J∗y⃗}), for all p ∈ V XI

, J ⊆ω I, and x⃗, y⃗ ∈ XI ; similarly for ∃V̄

• (SV̄
σ p)(x⃗) = p(σ∗x) where (σ∗x⃗)i = (x⃗)σ(i) for all σ ∈ II and x⃗ ∈ XI .

Note that we use [V XI

, V XI

] to denote that ∀V̄J p and ∃V̄J are total functions from XI to
V. If ⟨V, (◦V : ◦ ∈ O)⟩ ∈ ALG∗(L), the algebra of reduced models of L, and ∀V and ∃V are
respectively the generalized meet and join operations, then we say V̄ is a functional polyadic
L-algebra. We can prove a similar theorem as in [3] :

Theorem 1. Every functional polyadic L-algebra is a polyadic L-algebra.

To see the connection with algebraically-implicative predicate logic, let M be a reduced
model for L and PM is the interpretation of predicate symbols P ∈ P in M. We can show the
following lemma.

Lemma 1. Let F(M) be a subalgebra of Ā (with X = M and I = V ar) generated by {PM | P ∈
P}. Then F(M) is a functional polyadic ⟨L∀∃, V ar⟩-algebra.

To prove the converse case, it’s similar to the classical case that we need to impose some
further constrain on the polyadic algebras. We say an element a of a polyadic ⟨L∀∃, I⟩-algebra
has a finite support J ⊆ I if Sσa = Sτa for all σ, τ ∈ II such that σJτ . A polyadic ⟨L∀∃, I⟩-
algebra is locally finite if every element has a finite support. Hence, we can prove the following
functional representation theorem.

Theorem 2. Every locally finite polyadic L-algebra of infinite dimension is isomorphic to a
functional polyadic L-algebra.
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As a case study, we investigate the algebraization of first-order relevant logics. Let LRQ =
⟨{∧,∨,∼, ◦, 1,→}, Con, Pred, ∀, I, ρ⟩ where Con is a set of name constant symbols (i.e. 0-ary
functional symbols), Pred is a set of predicate symbols of varying arities, I is a countable set of
variables, and ρ is an arity function. A polyadic ⟨LRQ, I⟩-De Morgan Monoid is an algebra of
the form:

A := ⟨A;∧,∨,∼, ◦,→, 1, ⟨∀AJ | J ⊆ω I⟩, ⟨SA
σ | σ ∈ I(I)⟩⟩

that satisfies the following axioms:

(Poly) Axioms of polyadic ⟨L∀, I⟩-algebras

(DMM) The defining equations of De Morgan Monoids

(Q1) ∀J1 = 1;

(Q2) ∀Jp ≤ p;

(Q3) ∀J(p ∧ q) = ∀Jp ∧ ∀Jq;

(Q4) ∀J∀Jp = ∀Jp =∼ ∀J ∼ ∀Jp;

(Q5) ∀J(p → q) ≤ (∀Jp → ∀Jq);

(Q6) ∀J(∀Jp → ∀Jq) = ∀Jp → ∀Jq;

(Q7) ∀J(p ∨ q) =∼ ∀J ∼ p ∨ ∀Jq.

We can construct functional polyadic De Morgan Monoids similarly. Therefore, we have the
following theorem.

Theorem 3. Every functional polyadic ⟨LRQ, I⟩-De Morgan Monoid is a polyadic ⟨LRQ, V ar⟩-
De Morgan Monoid.
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