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Residuated lattices represented by
twist-structures

Manuela Busaniche

Universidad Nacional del Litoral-CONICET, Argentina
manuelabusaniche@yahoo.com.ar

Residuated lattices arise in many contexts, particularly in algebraic logic, as they provide
the algebraic semantics for substructural logics.
The class of residuated lattices is, in itself, a very broad class that includes a wide range
of structures of different kinds, many of which are algebraic semantics of well-known and
extensively studied propositional logics. Given this great diversity of algebras within the
class, the systematic study of residuated lattices often employs constructions to obtain
new structures from simpler or better-known ones. In this talk, we will focus on one such
constructions, which has become well-known due to the variety of cases it covers: the
twist-construction.
Although the first applications of twist-structures were used to obtain lattices with in-
volution (Kalman in 1958), several other authors considered expansions with additional
operations which induce new and interesting operations on the twist-structure. In partic-
ular, starting from a residuated lattice, the resulting construction yields a new one.
Our aim is to present a unified approach that offers a deeper insight into the classes of
residuated lattices that admit a representation based on twist- structures. Our framework
encompasses Nelson residuated lattices, Nelson paraconsistent residuated lattices, Kalman
residuated lattices, among others. Moreover, we will show that with this approach we can
also capture non-involutive twist-structures, such as Quasi-Nelson algebras and some of
its variants, which have been recently introduced and studied mainly by U. Rivieccio. Our
results enable comparisons among different twist-structures and provide some interesting
new examples.
The ideas of presented are based on the works [1] and [2], done in collaboration with N.
Galatos, M. Marcos and U. Rivieccio.

References

[1] M. Busaniche, N. Galatos and M. Marcos, Twist-structures and Nelson conuclei, Stu-
dia Logica 110 (2022), 949–987. https://doi.org/10.1007/s11225-022-09988-z.

[2] U. Rivieccio and M. Busaniche, Nelson conuclei and nuclei: the twist
construction beyond involutivity, Studia Logica 112 (2024), 1123–1161.
https://doi.org/10.1007/s11225-023-10088-9 .
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Weighted logics and weighted
automata

Manfred Droste

Institute of Computer Science, Leipzig University, Germany
droste@informatik.uni-leipzig.de

Quantitative models and quantitative analysis in Computer Science are receiving increased
attention. The goal of this talk is to investigate quantitative automata and quantitative
logics. Weighted automata on finite words have already been investigated in seminal
work of Schützenberger (1961). They consist of classical finite automata in which the
transitions carry weights. These weights may model, e.g., the cost, the consumption of
resources, or the reliability or probability of the successful execution of the transitions.
This concept soon developed a flourishing theory, as is exemplified and presented in several
books by Eilenberg, Salomaa-Soittola, Kuich-Salomaa, Berstel-Reutenauer, Sakarovitch,
and the "Handbook of Weighted Automata". We investigate weighted automata and their
relationship to weighted logics. For this, we present syntax and semantics of a quantitative
logic; the semantics counts ‘how often’ a formula is true in a given word. Our main result,
jointly with Paul Gastin, extending classical results of Büchi, Elgot and Trakhtenbrot
(1961), shows that if the weights are taken from an arbitrary semiring, then weighted
automata and a syntactically defined fragment of our weighted logic are expressively
equivalent. A corresponding result holds for infinite words. Moreover, this extends to
quantitative automata investigated by Henzinger et al. for modeling limit average-type
or discounting behaviors e.g. of power plants. Finally, we consider Fagin’s seminal result
(1974) characterizing NP in terms of existential second-order logic; this started the field of
descriptive complexity theory. In very recent work, jointly with Guillermo Badia, Carles
Noguera and Erik Paul, we obtained a weighted version of Fagin’s result.
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Interpolation and Amalgamation in
Many-Valued Logics

Wesley Fussner

Institute of Computer Science,
Czech Academy of Science, Prague, Czech Republic

fussner@cs.cas.cz

Fuzzy logics have long enjoyed a fruitful symbiosis with algebraic methods. In this talk,
I will discuss some recent successes of this symbiosis in the context of interpolation and
amalgamation. We will see both how the advancement of algebraic techniques have en-
abled rapid progress on interpolation in fuzzy logics, as well as how the challenges posed
by fuzzy logics have illuminated the path to new tools for the study of amalgamation in
general algebraic systems.
The centerpiece of this discussion will be my recent classification with S. Santschi of
varieties of BL-algebras with the amalgamation property, which yields also an exhaus-
tive classification of axiomatic extensions of Hájek’s basic fuzzy logic with the deductive
interpolation property. I will discuss the main ideas and technical challenges of this clas-
sification, and what it can teach us about interpolation and amalgamation writ large.

[1] W. Fussner and G. Metcalfe, Transfer Theorems for Finitely Subdirectly Irreducible
Algebras, J. Algebra 640:1-20 (2024).
[2] W. Fussner and S. Santschi, Amalgamation in Semilinear Residuated Lattices,
manuscript (2024). Available at https://arxiv.org/abs/2407.21613.
[3] W. Fussner and S. Santschi. Interpolation in Hájek’s Basic Logic, Ann. Pure. Appl.
Logic 176(9), paper no. 103615 (2025).
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Conditional logics: a proof-theoretic
perspective

Marianna Girlando

ILLC, University of Amsterdam, The Netherlands
m.girlando@uva.nl

Conditional logics, introduced by David Lewis in 1973, extend classical propositional logic
with a binary modal operator which captures fine-grained notions of conditionality, such
as counterfactual reasoning or non-monotonic inferences. Analytic proof systems for these
logics adapt the methods developed for modal logic, and are defined either by extending
the language of sequent calculus through labels or by adding structural connectives, as in
nested or hypersequent calculi.
In this talk, I will present sequent calculi for conditional logics that exemplify both ap-
proaches: a labelled sequent calculus that modularly captures a wide range of systems,
and a nested-style calculus that employs a structural connective corresponding to neigh-
borhoods in the semantic models. These calculi are grounded in neighborhood seman-
tics, which provide a flexible framework for representing conditionals. I will conclude
by discussing recent developments on intuitionistic conditional logics, defined by adding
the conditional operator to intuitionistic propositional logic, and outline corresponding
proof-theoretic systems.
This talk is based on joint works with: Tiziano Dalmonte, Bjoern Lellmann, Sara Negri,
Nicola Olivetti and Gian Luca Pozzato.
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Kites, pseudo-MV algebras and
ℓ-groups

Tomasz Kowalski (joint work with Michal Botur)

Jagellonian University, Krakow, Poland
tomasz.s.kowalski@uj.edu.pl

A kite is a certain construction with origins in work of Jipsen and Montagna, later de-
veloped by Dvurecenskij and TK, and later yet by Botur and TK. In particular, it yields
a categorical equivalence between perfect pseudo-MV algebras and lattice-ordered groups
with a distinguished automorphism. Combining several well-known facts about ℓ-groups,
residuated lattices and pseudo-MV algebras, this result can be presented as a pure ℓ-
group embedding result. Iterating the embedding we can construct an embedding of an
arbitrary ℓ-group into an ℓ-group with no nontrivial outer automorphisms. The result is
not new, it was known as early as 1973 to McCleary, under the assumption of GCH. In
2000, Droste and Shelah, eliminated the need for GCH. But both McCleary and Droste-
Shelah results are in fact about Holland representations: they show that any ℓ-group
Aut(C) for a chain C can be embedded into an ℓ-group Aut(D) for a chain D, such that
Inn(Aut(D)) = Aut(Aut(D)). We show less, namely, that any ℓ-group G can be embed-
ded into an ℓ-group H such that Inn(H) = Aut(H), but we use elementary techniques
that we discovered via working with kites and pseudo-MV algebras. Whether McCleary
and Droste-Shelah results can be fully recovered by our techniques remains to be seen.
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The algebraic structure of spaces of
integrable functions

Marco Abbadini

University of Birmingham, Birmingham, U.K.
m.abbadini@bham.ac.uk

Abstract

We characterize the functions RI → R that preserve integrability, meaning that
their pointwise application maps any I-tuple of integrable functions to an inte-
grable function (as, for example, the sum +: R2 → R). We show that Dedekind
σ-complete truncated vector lattices are precisely the algebras with integrability-
preserving functions as function symbols and that satisfy all equations true in R. We
also show that an analogous study restricted to finite measure spaces gives the class
of Dedekind σ-complete vector lattices with weak unit. Furthermore, we provide
concrete models for free algebras in these categories.

Introduction

Operations that preserve integrability

We investigate the operations that are somehow implicit in the theory of integration by
addressing the following question: which operations preserve integrability, in the sense
that they return integrable functions when applied to integrable functions?
To clarify the question, we recall some definitions.
For (Ω,F , µ) a measure space (with the range of µ in [0,+∞]), we write

L 1(µ) :=
{
f : Ω→ R | f is F -measurable and

∫
Ω
|f | dµ <∞

}
.

It is well known that, for f, g ∈ L 1(µ), we have f + g ∈ L 1(µ). In other words,
L 1(µ) is closed under the pointwise addition, induced by the addition of real numbers
+: R2 → R. More generally, consider a set I and a function τ : RI → R, which we shall
call an operation of arity |I|. We say that L 1(µ) is closed under τ if τ returns functions
in L 1(µ) when applied to functions in L 1(µ); i.e., for every (fi)i∈I ⊆ L 1(µ), the function
τ((fi)i∈I) : Ω → R given by x ∈ Ω 7→ τ((fi(x))i∈I) belongs to L 1(µ). If L 1(µ) is closed
under τ , we also say that τ preserves integrability over (Ω,F , µ). Finally, we say that τ
preserves integrability if τ preserves integrability over every measure space.
Our first contribution is a solution to the following question, mentioned at the beginning.

Question 1. Under which operations RI → R are L 1 spaces closed? Equivalently, which
operations preserve integrability?

11



The Logic Algebra and Truth Degrees (LATD) 2025

For every n ∈ N, we prove that a function τ : Rn → R preserves integrability precisely
when τ is Borel measurable and sublinear, meaning that there are positive real numbers
λ0, . . . , λn−1 such that, for every x ∈ Rn,

|τ(x)| ≤
n−1∑
i=0

λi|xi|.

We also prove an analogous result for the general case of arbitrary arity (not only for
finite n), settling Question 1.
Examples of such operations are the constant 0, the addition +, the binary maximum ∨
and minimum ∧, and, for λ ∈ R, the scalar multiplication λ( · ) by λ. A further example
is the operation of countably infinite arity

b
defined as

j
(y, x0, x1, . . . ) := sup

n∈ω
{min{y, xn}}.

Yet another example is the unary operation

· : R −→ R
x 7−→ x := x ∧ 1,

called truncation. Here, although the constant function 1 may fail to belong to L 1(µ), it
is always the case that f ∈ L 1(µ) implies f ∈ L 1(µ).
Non-examples are the binary product and any non-zero constant.
We prove that the examples above are essentially “all” the operations that preserve inte-
grability, in the sense that every operation that preserves integrability may be obtained
from these by composition.
Moreover, we address a variation of Question 1 in which we restrict attention to finite
measures.
In particular, for every n ∈ N, a function τ : Rn → R preserves integrability over finite
measure spaces precisely when it is Borel measurable and subaffine, meaning that there
are positive real numbers λ0, . . . , λn−1, k such that, for every x ∈ Rn,

|τ(x)| ≤ k +
n−1∑
i=0

λi|xi|.

Furthermore, we prove that the operations that preserve integrability over finite measure
spaces can be obtained by composition from 0, +, ∨, ∧, λ( · ) (for each λ ∈ R),

b
and

the constant 1 (which replaces the truncation operation · ).

Truncated vector lattices and weak units

We investigate the equational laws satisfied by the operations that preserve integrability.
We therefore work in the setting of varieties of algebras [4]. Under the term variety we
include also infinitary varieties, i.e. varieties admitting primitive operations of infinite
arity.

12
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We assume familiarity with the basic theory of vector lattices, also known as vector
lattices. All needed background can be found, for example, in the standard reference [8].
As usual, for a vector lattice G, we set G+ := {x ∈ G | x ≥ 0}.
A truncated vector lattice is a vector lattice G endowed with a function · : G+ → G+,
called truncation, which has the following properties for all f, g ∈ G+.

(B1) f ∧ g ≤ f ≤ f .

(B2) If f = 0, then f = 0.

(B3) If nf = nf for every n ∈ ω, then f = 0.

The notion of truncation is due to R. N. Ball [3], who introduced it in the context of
lattice-ordered groups.
Let us say that a partially ordered set B is Dedekind σ-complete if every nonempty
countable subset A ⊆ B that admits an upper bound admits a supremum. We prove
that the category of Dedekind σ-complete truncated vector lattices is a variety generated
by R. This variety can be presented as having operations of finite arity together with
the single operation

b
of countably infinite arity. Moreover, we prove that the variety is

finitely axiomatisable by equations over the theory of vector lattices. One consequence is
that the free Dedekind σ-complete truncated vector lattice over a set I (exists, and) is{

f : RI → R | f is measurable and sublinear
}
.

We prove analogous results for operations that preserve integrability over finite measure
spaces. An element 1 of a vector lattice G is a weak (order) unit if 1 ≥ 0 and, for all
f ∈ G, f ∧ 1 = 0 implies f = 0. We prove that the category of Dedekind σ-complete
vector lattices with weak unit is a variety generated by R, again with primitive operations
of countable arity. It, too, is finitely axiomatisable by equations over the theory of vector
lattices. We show that the free Dedekind σ-complete vector lattice with weak unit over a
set I (exists, and) is {

f : RI → R | f is measurable and subaffine
}
.

The above presentations of the free algebras depend on a version of the Loomis-Sikorski
Theorem for vector lattices, whose proof can be found in [7] (and can also be recovered
from the combination of [5] and [6]). The theorem and its variants have a long history:
for a fuller bibliographic account, please see [5].
This presentation is based on [2] (and partly on [1]).
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On Propositional Dynamic Logic and
Concurrency

Matteo Acclavio1, Fabrizio Montesi2, and Marco Peressotti2

University of Sussex, Brighton, UK 1

University of Southenr Denmark, Odense, DK 2

macclavio@gmail.com

Dynamic logics are families of logics where programs are part of the language of formulas
itself, which enables the direct use of the logic to reason about the semantics of pro-
grams [11]. At the syntactical level, each program a defines the modalities [a] and ⟨a⟩ and
a formula [a]ϕ is interpreted as “every state reached after executing a satisfies the formula
ϕ” while a formula ⟨a⟩ϕ is interpreted as “there is a state reached after executing a sat-
isfying the formula F”. Instances of dynamic logic include the modal µ-calculus [17], the
Hennessy-Milner logic [12], and the propositional dynamic logic (PDL) [11], and provide
solid foundations for the study of program verification and model checking [31, 7].

PDL and the concurrency problem

While PDL has been successfully applied to the study of sequential programs, extending
this approach to concurrent programs has been proved to be challenging. In standard PDL,
a program is represented by a regular expression that describes its set of possible traces.
In other words, programs are elements of a free Kleene algebra. This representation of
programs is satisfactory when reasoning about sequential programs, because one obtains
that the theory of equational reasoning for Kleene algebras is a complete system for
reasoning about trace equivalence [14, 18, 15, 30]. Trace equivalence is therefore captured
by logical equivalence in PDL:

a and b have the same traces iff ⊢PDL [a]ϕ⇔ [b]ϕ for any formula ϕ .

However, the case of concurrent programs with an interleaving semantics is more prob-
lematic. In the presence of interleaving, one expects traces differing by interleaving to be
equivalent modulo equations of the form a; b = b; a (called commutations). Unfortunately,
the word problem in a Kleene algebra enriched with an equational theory containing such
commutations is known to be undecidable1 which makes undecidable checking whether
two modalities in PDL are equivalent same.
As a consequence of this problem, applications of PDL to concurrency fall short of the ex-
pected level of expressivity from established theories, like CCS [23] and the π-calculus [24].
For example, previous works lack nested parallel composition, synchronisation, or recur-
sion [21, 5, 28, 29, 27, 4]. In general, adding any new concurrency feature (e.g., a construct
in the language of programs or a law defining its semantics) requires great care and effort

1In [16] is proven that the word problem in a star-continuous Kleene algebra can be reduced to
an instance of the Post correspondence problem, by combining sequential composition, iteration, and
commutations. This result has been recently extended to the general case of Kleene algebras [3].
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in establishing the meta-theoretical properties of the logic. The result: a literature of var-
ious PDL, all independently useful, but with different limitations and dedicated technical
developments.

In this talk

We discuss the result in [2], where we develop operational propositional dynamic logic
(OPDL). The key innovation of OPDL is to distinguish and separate reasoning on pro-
grams from reasoning on their traces. Thanks to this distinction, we circumvent previous
limitations and finally obtain a PDL that can be applied to established concurrency mod-
els, such as CCS [23] and choreographic programming [25]. Crucially, OPDL is a general
framework: it is parameterised on the operational semantics used to generate traces from
programs, yielding a simple yet reusable approach to characterise trace reasoning.
After recalling the axiomatization and semantics of PDL, we provide a proof of its sound-
ness and completeness with respect to the non-wellfounded sequent calculus introduced in
[8]. For this purpose, we provide the first cut-elimination result for this non-wellfounded
calculus, by adapting the technique developed in [1].2 This allows us to prove our results
by reasoning on the axiomatisation and the sequent system, without directly relying on
semantic arguments.
Then, we extend PDL with an additional axiom allowing us to encapsulate an operational
semantics for a set of programs into the trace reasoning.

AO : [α]ϕ⇔

 ∧
α b γ

[b] [γ]ϕ

 with α b γ in the operational semantics O

(0.1)
We call the resulting logic operational propositional dynamic logic (or OPDL), providing a
general framework encompassing various previous works [21, 5, 10], and we provide instan-
tiations of OPDL for Milner’s CCS [23] and Montesi’s latest presentation of choreographic
programming [26].
We conclude by discussing the open questions about the axiomatizaiton of algebraic mod-
els for OPDL, and we provide a roadmap for future research in this area.
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In this talk we explore a weakening of structural completeness that is obtained by con-
sidering specific subsets of the set of admissible quasiequations. We will also introduce
certain terms, called Prucnal terms that are generalizations of the well-known concept
of ternary deductive term introduced in [1]. We take for granted that the audience is
aware of the general definition of structural completeness and primitivity and of the basic
definitions and facts of universal algebra.

C-completeness

The concept of C-completeness has been introduced by the second author in [3]. Let A
be any set; a clone of operations on A is a set of operations on A that contains all the
projections and it is closed under composition (whenever possible). As the intersection of
any family of clones is still a clone, it makes sense to talk about clone generation (that is
of course a closure operator). If A is any algebra, then the term clone of A, denoted by
Clo(A), is the clone on A generated by all the fundamental operations.
Let now Q be a quasivariety; then the terms in the language of Q can be seen as operations
on FQ(ω), and the set of all terms is just the clone of all derived operations on FQ(ω),
i.e. the clone on FQ(ω) generated by all the fundamental operations. We will refer to
it as the term clone of Q and we will denote it by Clo(Q). Let C be a subclone of
Clo(Q); a C-quasiequation is a quasiequation containing only operations from C. We
say that Q is C-structurally complete if for every C-quasiequation Φ, if FQ(ω) ⊨ Φ,
then Q ⊨ Φ. A quasivariety is C-primitive if all its subquasivarieties are C-structurally
complete. Observe that if C ′ is a subclone of C and Q is C-structurally complete (C-
primitive), then Q is C ′-structurally complete (C ′-primitive). Observe also that if T
is a set of generators for C, it is easy to check that Q is C-structurally complete if
and only if for every quasiequation Φ containing only operations from T , FQ(ω) ⊨ Φ
entails Q ⊨ Φ. Therefore if T is a set of terms that generates C we may talk about
T -structural completeness and T -primitivity, meaning the corresponding concept for the
clone generated by T . If C is the entire term clone of Q, then C-structural completeness
is the usual structural completeness and C-primitivity is the usual primitivity.
Let Q be a quasivariety and let C be a subclone of the term clone of Q. Let QC be the
class of all C-subreducts of algebras in Q; then it is easily seen that QC is a quasivariety
in which all the C-quasiequation holding in Q are valid. So if QC is structurally complete
or primitive, then Q is C-structurally complete or C-primitive. For instance if H is the
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variety of Heyting algebras, then its {∧,→}-subreducts form the variety of Brouwerian
semilattices, that is (as we have already observed) primitive; thus H is {∧,→}-primitive.
The converse however fails to hold; the variety H of Heyting algebras is {→,¬}-structurally
complete [6] but the quasivariety of its {→,¬}-subreducts is not structurally complete
[2]. The problem is that there is a {→,¬}-quasiequation that is valid in the in FH{→,¬}(ω)
but it is not valid in FH(ω).

u-presentability and Prucnal terms

Let A be any algebra, θ ∈ Con(A) and let C be a subclone of Clo(A); by AC we denote
the algebra whose universe is A and whose fundamental operations are those in C. We
say that θ is u-presentable relative to C if there is a set ∆ ⊆ Con(A) such that

1. θ = ⋃∆;

2. ∆ is closed under finite joins;

3. AC/δ ∈ ISPu(AC) for all δ ∈ ∆;

and ∆ is called a u-presentation of θ relative to C.

Theorem 1. Let A be an algebra, θ ∈ Con(A) and C a subclone of Clo(A); then the
following are equivalent:

1. θ is u-presentable relative to C;

2. AC/θ ∈ ISPu(AC).

Corollary 1. For any algebra A and C ⊆ Clo(A) the following are equivalent:

1. every congruence of A is u-presentable relative to C;

2. every compact congruence of A is u-presentable relative to C.

Now we can connect u-presentability and structural completeness.

Theorem 2. Let Q be a quasivariety and C a clone of operations of Q; if every compact
congruence of FQ(ω) is u-presentable relative to C, then Q is C-structurally complete.

Corollary 2. Let Q be a quasivariety and C a clone of operations of Q; if every compact
Q-congruence of every countably generated algebra in Q is u-presentable with respect to
C, then Q is C-primitive.

It is interesting to observe that if C is the entire term clone of Q, then we obtain a new
necessary and sufficient condition for structural completeness.

Theorem 3. A quasivariety Q is structurally complete if and only if every completely
meet irreducible congruence θ ∈ ConQ(FQ(ω)) is u-presentable.
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Corollary 3. A quasivariety Q is primitive if and only if for every countably generated
A ∈ Q every completely meet irreducible θ ∈ ConQ(A) is u-presentable.

Sometimes u-presentability is expressible directly via term operations. Let A be any
algebra, C a subclone of the clone of all term operations on A, T a set of generators for
C and AT the reduct of A to T ; we say that A has the Prucnal property relative to
C if for all n ∈ N there is a term tn(x1, . . . , xn, y1, . . . , yn, z) such that for any compact
θ ∈ ConQ(A) such that θ = ∨n

i=1 ϑ
Q
A(ai, bi)

1. the map σn : c 7−→ tn(a1, . . . , an, b1, . . . , bn, c) is an endomorphism of AT ;

2. ker(σn) = θ;

the terms tn are called the Prucnal terms relative to C and the endomorphisms σn are
called the Prucnal C-endomorphisms. If C is the entire clone of derived operations
on A, then we will drop the decoration C.

Theorem 4. Let Q be a quasivariety and let C a clone of term operations of Q. If FQ(ω)
has the Prucnal property relative to C, then Q is C-structurally complete.

Corollary 4. Let Q be a quasivariety and let C a clone of term operations of Q. If
every countably generated algebra in Q has the Prucnal property relative to C, then Q is
C-primitive.

Principal Prucnal property

A quasivariety Q has the principal Prucnal property relative to C, if there is a term
t(x, y, z) that is a Prucnal term for principal congruences, relative to C, i.e. for all A ∈ Q
and for all a, b,∈ A

1. the map σ : c 7−→ t(a, b, c) is an endomorphism of AC ;

2. ker(σ) = ϑQ
A(a, b).

We will show that for any quasivariety the principal Prucnal property (relative to C)
implies the Prucnal property (relative to C). To this aim we need several lemmas.

Lemma 1. [4] Let Q be a quasivariety and A ∈ Q; if θ ∈ ConQ(A) and a, b ∈ A then
(θ ∨ ϑQ

A(a, b))/θ = ϑA/θ(a/θ, b/θ).

For the following lemma, in order to avoid clutter we use a special notation; first we will
denote a sequence a1, . . . , an ∈ A by an. Next if θ ∈ Con(A) we will write Ā for A/θ, a
for a/θ and an for a1, . . . , an.

Lemma 2. Let Q be a quasivariety, A ∈ Q and a1, . . . , an, b1, . . . , bn ∈ A. If x =
x/ϑQ

A(an, bn), Ā = A/ϑQ
A(an, bn) and c, d ∈ A then

(c, d) ∈ ϑQ
A(a1, b1) ∨ . . . ∨ ϑQ

A(an, bn) if and only if
(c, d) ∈ ϑQ

Ā(a1, b1) ∨ . . . ∨ ϑQ
Ā(an−1, bn−1).

22



The Logic Algebra and Truth Degrees (LATD) 2025

Let Q be a quasivariety with a principal Prucnal term relative to C, say t(x, y, z). We
define for n ≥ 1

t1(x1, y1, z) := t(x1, y1, z)
tn+1 = tn(x1, . . . , xn, y1, . . . , yn, t(xn, yn, z)).

Lemma 3. Let Q be a quasivariety with principal Prucnal term t(x, y, z) relative to C,
A ∈ Q and a, b, c, d ∈ A. Then

(c, d) ∈ ϑQ
A(a1, b1) ∨ . . . ∨ ϑQ

A(an, bn) if and only if
tn(an,bn, c) = tn(an,bn, d).

We observe that Lemma 3 is a generalization of Theorem 2.6 in [1].

Corollary 5. If a quasivariety Q has a principal Prucnal term relative to C, then it has
the Prucnal property relative to C.

Proof. The terms tn, n ≥ 1 clearly satisfy the first condition for Prucnal terms, as iterated
compositions of t. By Lemma 3 they also satisfy the second.

Ternary deduction terms

Here we will consider a special principal Prucnal term. Let Q be a quasivariety; a ternary
deductive term (TD-term) for Q is a ternary term t(x, y, z) such that

• Q ⊨ t(x, x, z);

• if (c, d) ∈ ϑQ
A(a, b) then t(a, b, c) = t(a, b, d).

Let Q be a quasivariety with a TD-term t(x, y, z) and q a k-term of Q; we say that q
commutes with t if for all A ∈ Q and a, b, c1, . . . , ck ∈ A

t(a, b, q(c1, . . . , ck)) = q(t(a, b, c1), . . . , t(a, b, ck)).

Theorem 5. A quasivariety haveing a TD-term is a variety.

Theorem 6. If t(x, y, z) is a TD-term for Q, then t is a principal Prucnal term relative
to any clone C of operations that commute with t(x, y, z).

Corollary 6. Let Q be a variety with a TD-term. Then for all nontrivial A ∈ Q, A has
the Prucnal property for A, relative to any clone C of operations that commute with the
relative TD-term.

Corollary 7. Let Q be a quasivariety with a relative TD-term; then Q is C-primitive for
any clone C of terms that commute with the relative TD-term.
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The temporal Heyting calculus tHC, first presented in [3], is the natural temporal aug-
mentation of the modalized Heyting calculus mHC, also first studied in [3]. It has as
its algebraic models the category of temporal Heyting algebras tHA, a class of Heyting
algebras with a “forward-looking” that has a left-adjoint, “backward-looking” ♦. Be-
ing intuitionstic, however, it lacks the modalities ♢ and ■ typically defined in terms of
negation.

Past Future
∃ ♦ ♢
∀ ■

We present a suitable category of topological models for the logic (temporal Esakia spaces
tES) and develop an Esakia duality between the categories of algebraic and topological
models. This includes defining a class of filters on tHA and closed upsets on tES such
that we have a poset-isomorphism between tHA congruences, our class of filters, and our
class of closed upsets. Having achieved this, we classify simple and subdirectly-irreducible
(s.i.) temporal Heyting algebras via their dual spaces as was done for “BAOs” in [4] and
“distributive modal algebras” in [1]. Finally, we use this characterization to achieve a
relational completeness result combining finiteness (achieved via finite model property)
and a notion of “rootedness” dual to subdirect-irreducibility (analogous to the result that
IPC is complete with respect to the class of finite trees).

Logic

Definition 1. The modalized Heyting calculus mHC is the smallest extension of IPC
containing the following axioms and closed under modus ponens.

(p→ q)→ ( p→ q) p→ p p→ (q ∨ q → p)

The temporal Heyting calculus tHC is the smallest extension of mHC containing the
following axioms and closed under modus ponens and the rule φ→χ

♦φ→♦χ .

♦(p ∨ q)→ (♦p ∨ ♦q) ♦⊥ → ⊥ p→ ♦p ♦ p→ p

Algebraic models

We define the algebraic models for our logic tHC.
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Definition 2. A temporal Heyting algebra is a frontal Heyting algebra A (see [2]) with
an additional operator ♦ : A→ A such that ♦ ⊣ , ie.

♦a ⩽ b ⇐⇒ a ⩽ b.

The category tHA has as its objects temporal Heyting algebras and as its morphisms
algebraic homomophisms.

Here we define the class of filters that will correspond to congruences on our algebras
Cong(A), analogous to the correspondence between congruences and “open filters” on
BAOs [5, Theorem 29]. We also define a class of elements analogous to “open elements”.

Definition 3. Given A ∈ tHA, a ♦-filter is a filter F ⊆ A such that

a→ b ∈ F =⇒ ♦a→ ♦b ∈ F.

A ♦-compatible element is an element a ∈ A such that for all b,

a ∧ ♦b ⩽ ♦(a ∧ b).

The sets of ♦-filters and ♦-compatible elements of A are denoted by ♦Filt(A) and ♦Com(A)
respectively.

Theorem 1. Given A ∈ tHA,

⟨Cong(A),⊆⟩ ∼=POS ⟨♦Filt(A),⊆⟩.

In the finite case, the correspondence can be given element-wise.

Corollary 1. Given A ∈ tHAfin,

⟨Cong(A),⊆⟩ ∼=POS ⟨♦Filt(A),⊆⟩ ∼=POS ⟨♦Com(A),⩾⟩.

Topological models

We define the topological models for our logic tHC.

Definition 4. A temporal Esakia space is an “Rf -Heyting space” X (see [2]) with an
additional “backward-looking” relation R◁ ⊆ X× X such that

• R◁ is inverse to R▷ (where R▷ is the “forward-looking” relation)

• K ∈ ClopUp(X) implies R▷[K] ∈ ClopUp(K)

• R▷[x] is closed.

A temporal Esakia morphism is an “Rf -Heyting morphism” f : X→ Y (see [2]) such that

fx2 R
◁ y implies ∃x1 ∈ X such that x2 R

◁ x1 and y ⩽ fx1.

The category tES has as its objects temporal Esakia spaces and as its morphisms temporal
Esakia morphisms.
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Here we define a class of subsets on temporal Esakia spaces that will correspond to
congruences of the dual algebras.
Definition 5. Given X ∈ tES, we call a subset S ⊆ X archival if

x /∈ S ∋ z and z R◁ x =⇒ R◁[z] ∩ ↑x ∩ S ̸= ∅.
This is depicted as follows.

S

x

y

z

R◁ R◁

⩽

We denote the set of archival subsets of X by Arc(X), the set of archival upsets of X by
ArcUp(X), and the set of closed archival upsets of X by ClArcUp(X).

We define a notion of reachability on our spaces in terms of closed archival upsets. This
is essentially analogous to the “specialization order”.
Definition 6. Given X ∈ tES,

xP y :⇐⇒ y ∈
⋂
{C ∈ ClArcUp(X) | x ∈ C}.

If x P y, we say that y is topo-reachable by x. We denote the set of topo-roots of X (ie.
the points that are roots with respect to P) by ToRo(X).

In the finite case, we can define another notion of reachability (via a relation Z) only in
terms of the underlying frame.
Definition 7. Given X ∈ tESfin, we define the following relation B.

x B w :⇐⇒ w ⩽ x and (w, x] ∩ Refl(X) = ∅
We also define the following relations for all n ∈ N.

Z0 := ∆X Zn+1 := Zn;B;⩽ Z :=
⋃
m∈N

Zm

In the finite case, we show that these two notions of reachability are equivalent.
Proposition 1. Given X ∈ tESfin, x P y iff x Z y. Note that this implies that x is a
topo-root iff x is a Z-root as well as the fact that X is topo-connected iff X is Z-connected.

Esakia Duality

Building on the work in [2], we further augment the functors ∗ : HA ⇆ ES : ∗ using
♦ and R◁ to define eachother in the standard way. We then prove a duality between the
categories of our algebraic and topological models.
Theorem 2. tHA ∼= tESop.

We then extend our congruence-correspondence to the dual spaces.
Theorem 3. Given A ∈ tHA,

⟨Cong(A),⊆⟩ ∼=POS ⟨♦Filt(A),⊆⟩ ∼=POS ⟨ClArcUp(A∗),⊇⟩.
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Characterizations

We characterize simple algebras lattice-theoretically and order-topologically.

Theorem 4. Given A ∈ tHA, the following are equivalent.

• A is simple • ♦Filt(A) = {{1},A} • A∗ is topo-connected

In the finite case, we can give the same characterization element-wise and frame-
theoretically.

Corollary 2. Given A ∈ tHAfin, the following are equivalent.

• A is simple • ♦Com(A) = {1, 0} • A∗ is Z-connected

We characterize subdirectly-irreducible algebras lattice-theoretically and order-topologically.

Theorem 5. Given A ∈ tHA, the following are equivalent.

• A is s.i. • ♦Filt(A) has a second-least element • ToRo(A∗) non-empty and open

In the finite case, we can again give the same characterization element-wise and frame-
theoretically.

Corollary 3. Given A ∈ tHAfin, the following are equivalent.

• A is s.i. • ♦Com(A) has a second-greatest element • A∗ is Z-rooted

Applications to tHC

We show that tHC has the finite model property, implying the following, stronger alge-
braic completeness result.

Theorem 6. The logic tHC is sound and complete with respect to the class of finite,
subdirectly-irreducible temporal Heyting algebras tHAfsi.

Finally, we use our characterization of subdirectly-irreducible temporal Heyting algebras
to arrive at the following relational completeness result.

Theorem 7. The logic tHC is sound and complete with respect to the class of finite,
Z-rooted “temporal transits” (transits [3] with an inverse relation R◁).
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The affinity between structural proof theory and the mathematical foundations of com-
putation establishes mechanisms of proof compression as a natural object of study. The
most prominent proof compression mechanism is the cut rule [11, 12], which allows lem-
mas to be reused in a proof. And indeed, eliminating the cuts from a proof can lead to a
non-elementary blow-up [6]. In propositional logic, this blow-up is still exponential [19].
In the area of proof complexity, a distinct subfield of proof theory, other mechanisms
of proof compression have been studied, the most notable ones being substitution [9]
and Tseitin extension [20]. In both cases, proof compression is achieved by permitting
propositional variables to replace arbitrary subformulae in a proof. The cost of eliminating
either rule from a proof is an exponential blow-up (and it is not known whether this can
be done more efficiently).
Given their conceptual similarity, it is perhaps not so surprising that, in the presence of
cut, extension and substitution are p-equivalent, i.e., a system with cut and substitution
can polynomially simulate one with cut and Tseitin extension [9], and vice versa [16]. This
has been shown in the setting of Frege systems, which always contain the cut because of the
presence of the modus ponens rule. Moreover, even in the absence of cut, it has also been
demonstrated that the two proof compression mechanisms of substitution and Tseitin
extension are p-equivalent [18, 17]. However, it is not known if cut-free systems with
extension or substitution can p-simulate systems with cut and extension or substitution.
This leaves us with two powerful proof compression mechanisms: (i) the cut and (ii)
extension/substitution. It is an open question whether one of them subsumes the other,
or whether they are truly independent.
In this work we give a surprising answer to this question. We observe that both proof com-
pression mechanisms are subsumed by a more general one, namely, guarded substitution,
which is a variant of explicit substitutions [1].
To see how this is possible, let us first observe that the proof compression of cut and sub-
stitution comes from the ability of reusing information. And the most basic inference rules
that deal with duplication of information are the rules of contraction and cocontraction
shown below:1

1In fact, the combination of contraction and cocontraction form another mechanism of proof compres-
sion, when cut is absent. This has been investigated in [15, 8, 10]. However, we will not go into further
details of this, as we develop in this work a cut-free system that can p-simulate cut.
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⊢ Γ, A ⊢ Ā,∆
cut

⊢ Γ,∆
; A ∧ Āi↑

0
;

a ∧ āai↑
0 ;

(0 a 1) ∧ (1 a 0)
â∧

(0 ∧ 1) a (1 ∧ 0)

Figure 1: Evolution of cut from the sequent calculus via deep inference to subatomic proof
theory

A ∨ Ac↓
A

and Ac↑
A ∧ A

(0.1)

A move to a deep inference proof system [14, 7], which allow for finer granularity in the
design of the inference rules, enables the restriction of these rules to their atomic form,
shown below, provided there is an additional purely linear inference rule in the system [7].
This rule, called medial, is shown in the middle below:

a ∨ aac↓
a

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)
aac↑

a ∧ a (0.2)

This leads to the proof system SKS [7], consisting only of atomic rules (like ac↓ and ac↑
above) that change the size of a formula, and purely linear rules (like m above) that only
rearrange subformulae without changing the size.
The next insight comes from the concept of subatomic proof theory [2, 3, 5] which splits
the atoms into binary connectives. A formula “A aB” is then interpreted as “if a is false
then A, and if a is true then B”. In this setting, we can write a as 0 a 1 and its dual ā as
1 a 0. The two rules of ac↓ and ac↑ from above now become:

(0 a 1) ∨ (0 a 1)
(0 ∨ 0) a (1 ∨ 1)

and
(0 ∧ 0) a (1 ∧ 1)
(0 a 1) ∧ (0 a 1)

(0.3)

which are just instances of the general rules

(A aB) ∨ (C aD)
∨̌a

(A ∨ C) a (B ∨D)
and

(A ∧B) a (C ∧D)
∧̂a

(A a C) ∧ (B aD)
(0.4)

which have the same shape as the medial rule in (0.2) above. The same principle also
applies to the cut rule: in Figure 1 we see the evolution of the cut, starting from the
sequent calculus, first becoming an atomic rule, and finally a subatomic rule. In this way
we can obtain a proof system for propositional logic in which all inference rules are linear
rewriting steps [2], except for the rules dealing with the units, for example

A=
A ∧ 1

A=
A ∨ 0

A ∧ 1=
A

A ∨ 0=
A

(0.5)

Even though these are rather trivial inference steps in a standard proof system, they are
the only ones that break a rigidly defined notion of linearity in a subatomic proof system.
To achieve what is called a strictly linear system, these can be eliminated, but the naive
way of doing so leads to an exponential blow-up of the size of the proof [4, 5]. However,
by allowing explicit substitutions as constructors in formulae and derivations, the size
of the proof expansion can be reduced to a polynomial [5]. The resulting system (called

31



The Logic Algebra and Truth Degrees (LATD) 2025

KDTS in [5]) is p-equivalent to SKS (and therefore also to standard Frege systems without
extension or substitution) and still contains the cut (in its linear form, as shown on the
right in Figure 1). And, unsurprisingly, eliminating the cut from this system leads to an
exponential blow-up [5]. Furthermore, it is unknown whether these explicit substitutions
can in any way polynomially simulate Tseitin extension or substitution in Frege systems.
In other words, in terms of proof complexity, nothing has been gained so far with respect
to what we said at the beginning of this introduction; even in the unfamiliar climes
of a subatomic proof system with explicit substitutions, it appears that both cut and
extension/substitution operate as independent means of compressing proofs.
This motivates our paper, in which we introduce guarded substitutions that offer us a
distinct new means of proof compression.
Guarded substitutions are a variant of explicit substitution that, instead of representing
the replacement of every occurrence of a free variable, only select a certain subset of the
free occurrences of the given variable. To make this formal, we assign to every variable
occurrence a range, and to every guarded substitution a guard, and the substitution can
apply to the variable occurrence, if the guard is in the range. For example, the formula
⟨A|x⟩((x∧ x)∨ (y ∧ x)) with an ordinary explicit substitution becomes (A∧A)∨ (y ∧A)
when the substitution is carried out, whereas the formula ⟨⟨A|x⟩⟩p((xq,p ∧ xr)∨ (yp ∧ xp,r))
becomes (A ∧ xr) ∨ (yp ∧ A) when the substitution is carried out, because only the first
and the last x have the guard p in its range.
With this additional construct, the new system, that we call KSubG, can polynomially
simulate Frege systems with substitution. Furthermore, we can do this with the cut-free
fragment KSubG−. In other words, guarded substitution can polynomially simulate the
cut, as well as Tseitin extension and substitution in Frege systems. And surprisingly, this
can even be done when we only allow the units 0 and 1 in the place of the formula to be
substituted (the A in the example above).
Since Frege systems with substitution are known to be the most potent propositional
proof systems, in the sense that they can polynomially simulate every other proof system
for classical propositional logic, our system KSubG has now the same property, with the
additional feature that every inference step is linear. There is never an inference that
adds or deletes information.
This becomes possible because a subatomic derivation can be interpreted as a superposi-
tion of standard derivations. Even though this idea has been around since the beginning
of subatomic proof theory [13], only our guarded substitutions allow to make use of this.
We can see such a superposition as executing several similar shaped derivations in parallel,
and the guarded substitutions can be used to read out the correct results.
For example, the derivation

Ψ = (x ∨ x) ∧ y ∧ 0
mix
y ∨ 0

is a superposition of the derivation

Φ =
a ∨ aac↓
a ∧ 0aw↓

ā
ai↑

0
because by substituting 0 for x and 1 for y in Ψ we can recover the result of assuming
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that a is false in Φ, and by substituting 1 for x and 0 for y we can recover the result
of assuming that a is true. Then Φ can be encoded by the subatomic derivation with
guarded substitutions

⟨⟨0|x, 1|y⟩⟩l ⟨⟨1|x, 0|y⟩⟩r ⟨Ψ|z⟩(zl a zr)
We can recover from this the conclusion of Φ, and the resulting derivation contains no
cuts.
This allows for the factorisation of lemmas with different inputs, essentially performing
the work of both modus ponens and the Frege substitution rule. In this way, we are able to
p-simulate substitution Frege in a cut-free subatomic system with guarded substitutions.
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In [1] Hamkins and Löwe investigate how the set theoretical method of forcing between
models of set theory affects the corresponding theory of a model. The method of forcing,
which has become a fundamental tool in set theory, was first introduced by Paul Cohen
in 1962 in order to prove the indepence of the Axiom of Choice and the Continuum
Hypothesis from the other axioms of set theory. Since then, this method has widely
been used to construct a huge variety of models of set theory and prove many other
independence results.
With forcing one builds an extension of any model of set theory using algebraic tools; the
resulting forcing extension will be another model which is closely related to the original
one, but may exhibit different set theoretical truths in a way that can often be carefully
controlled. Since the ground model has some access, via the forcing relation, to the truths
of the forcing extension, there are clear affinities between forcing and modal logic. In fact,
one can even consider the collection of all models of set theory, where the accessibility
relation is induced by forcing, as an enormous Kripke model. Following this strategy, they
define that a statement of set theory φ is possible if it holds in some forcing extension
and necessary if it holds in all forcing extensions; the modal notations 3φ and φ express
respectively that φ is possible and necessary.
More specifically, a modal assertion is a formula of propositional modal logic, which
is expressed with propositional variables pi, the usual Boolean connectives ∧, ∨, ¬, →,
⇐⇒ and the modal operators , 3. The notation φ(p0, ..., pn) is used to denote a
modal assertion whose propositional variables are among p0,...,pn. A modal assertion
φ(p0, ..., pn) is a valid principle of forcing if for all sentences ψi in the language of
set theory, φ(ψ0, ..., ψn) holds under the forcing interpretation of and 3. We say that
φ(p0, ..., pn) is a ZFC provable principle of forcing if ZFC proves all the substitution
instances φ(ψ0, ..., ψn). In their paper, Hamkins and Löwe prove that if ZFC is consistent,
then the ZFC-provably valid principles of forcing are exactly the assertions of the well-
known modal logic S4.2: this is what the authors of [1] mean when they assert that the
modal logic of forcing is S4.2.
A natural extension of the problem introduced by Hamkins and Löwe was presented in
[2]: the key idea of this paper is to consider a class of structures C endowed with a binary
relation ⊑ which is interpreted as accessibility: given M, N ∈ C, the notation M ⊑ N
is used to state that M accesses N. Clearly, this gives (C,⊑) the structure of a Kripke
frame, whose Kripke models we can study. It is then natural to study the modal logic
this interpretation gives rise to.
First of all, we consider the case in which C is generic. Let C be any class and ⊑ be a
definable binary class relation on C. We consider (C,⊑) as a Kripke frame; a valuation
is a function v : Prop × C → {0, 1} (where we denote by Prop the set of propositional
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variables) and a Kripke model is a triple (C,⊑, v). The Kripke semantics for the
language L of modal logic can be easily defined. If M ∈ C, then:

C,⊑, v,M |= p if and only if v(p,M) = 1 (if p is a propositional variable);

C,⊑, v,M |= φ ∧ ψ if and only if C,⊑, v,M |= φ and C,⊑, v,M |= ψ;

C,⊑, v,M |= ¬φ if and only if C,⊑, v,M ̸|= φ;

C,⊑, v,M |= φ if and only if for all N ∈ C such that M ⊑ N we have C,⊑, v,N |=
φ.

A modal formula φ is valid in a Kripke model (C,⊑, v) if for every M ∈ C we have
C,⊑, v,M |= φ. A modal formula φ is valid in a Kripke frame (C,⊑) if it is valid
in every model based on that frame. We call the modal logic of (C,⊑), denoted by
ML(C,⊑), the collection of modal formulas which are valid in (C,⊑).
The problem proposed in [2] concerns characterizing for a given frame (C,⊑) the modal
logic ML(C,⊑) in terms of other well-known modal logics, basing on the study of the
class C and of the properties of the relation ⊑. This problem becomes more interesting
when we consider C as a class of structures and investigate modal logic it gives rise to.
Therefore, we go on providing the general setting for classes of structures.
Let S be a non-logical vocabulary, LS be the first order language with vocabulary S and
let C be a class of LS-structures (for example C could be the class of all LS-structures
satisfying a collection of LS-sentences). A language L ⊇ LS is called C-adequate if
there is a definable model relation |= between the elements of C and L sentences, which
extends the usual model relation od LS.
An L -translation is a function T : Prop → Sent(L ), assigning an L -sentence to
each propositional variable. Any L -translation gives rise to a valuation vT for the class
C, called the L -structure valuation in a natural way: vT (p,M) = 1 if and only if
M |= T (p). Clearly, this induces a Kripke model (C,⊑, vT ).
The L -structure modal logic of (C,⊑), denoted by MLL (C,⊑) is the set of modal
formulas that are valid in each Kripke model (C,⊑, vT ) for an L -translation T . Notice
that

ML(C,⊑) ⊆ MLL (C,⊑) ⊆ MLLS
(C,⊑).

Now let C and ⊑ be respectively a fixed class of structures and a binary relation on C.
The problem of showing that ML(C,⊑) is some well-known modal logic L can be easily
split in two tasks: proving that L is a lower bound for ML(C,⊑) and then showing that
the lower bound is also an upper bound.
Finding a lower bound is quite easy: the strategy is based on the classical results concern-
ing completeness of some modal logics with respect to certain classes of frames. Consider
for example S4.2, that is known to be complete with respect to the class of frames in
which the accessibility relation is reflexive, transitive and directed: if we manage to prove
that the relation ⊑ on C is a directed pre-order, then we obtain S4.2 ⊆ ML(C,⊑).
The same argument can be applied to other well-known modal logics, depending on the
properties of the relation ⊑. In particular, if we want our logic ML(C,⊑) to be at least S4,
we need to request that ⊑ is reflexive and transitive on C. In other words, this happens
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if the operator which sends each M ∈ C to {N ∈ C : M ⊑ N} gives rise to a closure
operator.
The task of finding upper bounds and in particular proving that the lower bound is also
an upper bound requires more effort and is based on finding a labeling for a fixed frame
using (C,⊑). More specifically, if (F ,R) is a transitive and reflexive frame with initial
world w0 (i.e. w0Ru for every u ∈ F ), then a C-labeling of the rooted frame (F ,R, w0)
for an element M ∈ C is an assignment to each node w ∈ F of a formula φw in the
language L , such that:

1. every N ∈ C such that M ⊑ N satisfies exactly one φw;

2. if N ∈ C is such that M ⊑ N and N |= φw, then N |= 3φu if and only if wRu ;

3. M |= φw0 .

We can show (a proof can be found in [1]) that if for a fixed frame (F ,R) satisfying the
hypothesis above and for a given initial world w0 ∈ F there exists a C-labeling for every
M ∈ C, then MLL (C,⊑) is contained in the modal logic of assertions valid in F at w0.
Suppose now that we have managed to show that L ⊆ ML(C,⊑) using the strategy for
lower bounds, and that MLL (C,⊑) ⊆ L using the method for upper bounds. Then we
obtain:

L ⊆ ML(C,⊑) ⊆ MLL (C,⊑) ⊆ L

and so MLL (C,⊑) = L.
This method provides a general strategy that can be applied to characterize MLL (C,⊑)
in terms of other well-known modal logics and it can be applied in principle to whatever
class of structures we want. It could therefore be interesting to consider certain classes of
algebras (for example some varities or quasivarieties) and interesting binary relations on
them in order to find the modal logic they give rise to: this is exactly the framework in
which the work presented in [2] lives.
The authors consider the class, which is actually a variety, of abelian groups AG together
with the relation given by the operator IS: for A, B ∈ AG, the notation A ≤ B will stand
for A ∈ IS(B), i.e. A is isomorphic to a subgroup of B. They manage to show that the
modal logic ML(AG,≤) is exactly S4.2
The fact that S4.2 is a lower bound for the modal logic of abelian groups is clear, since it
is straighforward to prove that the relation ≤ on AG is reflexive, transitive and directed,
since given A, B ∈ AG there exists a common upper bound for them in terms of ≤, the
cartesian product A×B in which both A and B can be embedded.
In order to prove that S4.2 is also an upper bound for the modal logic of abelian groups,
the strategy of finding a labeling of certain frames which are complete with respect to S4.2
is used. Without entering into detail, it turns out that often the existence of a labeling can
be broken down into simpler statements; the control statements can be seen as building
blocks through which we can construct more complex statements and therefore labelings
(see [3] for more details). The authors prove that given any abelian group A, there is
always the possibility of building another group B which satisfies exactly some specific
control statements and in which A can be embedded, i.e. A ∈ IS(B). In this way they
show that S4.2 is an upper bound for ML(AG,≤).
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The construction that appears in [2], which is based on the tools of localisations and
controlled group amplifications, uses at great extent the fact that the groups are abelian:
for example with non-abelian groups, there wouldn’t be the possibility of dealing with
controlled group amplifications, since they would not be well defined. In fact the authors
leave the readers with an open question, which is related to what happens in the case of
non-abelian groups.
It turns out that a different construction can be used in the general case of groups (even
non-abelian ones) and, since this construction does not use the operation of inverse, it
works for monoids as well. Moreover, this construction uses the same control statements
as the ones that were introduced for abelian groups: this is not obvious, since control
statements are defined as first order sentences in the language of the theory we are con-
sidering, which satisfy some specific axiom schemata (see [3] for more details). This means
that in principle any set of formulas of the language can be chosen, provided that all the
formulas in the collection satisfy some specific properties. Therefore, even if a construc-
tion does not work for a certain class and for a specific set of control statement, there
may be another set of control statements and/or another construction that work for that
class of structures.
In this case there is no need to look for other control statements, since the ones provided
in [2] work equally well in the case of monoids, as long as another construction, which
does not require commutativity and existence of inverse, is used. Therefore, using the
same control statements as the ones introduced in [2] but a different construction, it can
be shown that ML(M,≤) = S4.2, where we denoted by M the variety of monoids.
We highlight that this result is original and it constitutes an extension of the one presented
in [2], in fact any monoid homomorphism between two groups is also a group homomor-
phism; suppose that A and B are groups and that A′ ⊆ A and B′ ⊆ B are monoids,
then if f : A′ → B′ is a monomorphism, the natural extension of f to A is a group
monomorphism from A to B. Using our notation, if A′ ≤ B′ in the sense of monoids,
then A ≤ B in the sense of groups. Because our purpose was to characterize the modal
logic induced by the relation ≤ (ore equivalently by the operator IS), this observation
witnesses that the result above really extends the one about groups.
We observe that this problem could have many future developments: it could be natural
to analyze what happens for other classes of structures with the relation given by IS, or
we could even switch to other significant operators, like SP, HSP, ISPu and so on. Let’s
consider for example the case in which the class is a given variety V and the relation ≤
is induced by the operator IS as before: if V does not have the joint embedding property
the relation is not directed and therefore it is not true that S4.2 is a lower bound for
ML(V,≤). However, ≤ is clearly reflexive and transitive whatever the variety V is, which
yields S4 ⊆ ML(V,≤): this is what happens for example for lattices. Hence, one of the
many possible further directions of this work could be the one of finding conditions on V
which allow us to characterize the modal logic of the embedding on V in terms of modal
logics which are based on S4.
Finally we remark that the problem we deal with is different from the one that is presented
in [4]: there the authors work on the collection of all the models of a fixed language and
investigate the modal logic of this class with respect to the relation of being a submodel.
In other words, from an algebraic point of view, they consider the class C consisting of all
the algebras of the same fixed type together with the relation ≥ such that given A, B ∈ C,
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A ≥ B if B is a subalgebra of A; then they try to characterize ML(C,≥). This approach
is different from ours mainly for two reasons: firstly, we don’t work with the class of all
algebras of the same type (which is very wide and contains structures that may be very
different from each other), but we restrict to classes of algebras of the same type satisfying
some specific axioms. Moreover the relation considered in [4] is exactly the opposite with
respect to the one we deal with: for us A in in relation with B if A ∈ IS(B), while for
the authors of [4] A is in relation with B if B ∈ IS(A).

References

[1] Hamkins, Joel and Löwe, Benedikt, The modal logic of forcing, Transactions of the
American Mathematical Society 360(2005).

[2] Berger, Sören and Block, Alexander and Löwe, Benedikt, The modal logic of abelian
groups, Algebra Universalis 84(2023).

[3] Hamkins, J., Leibman, G., and Löwe, B., Structural connections between a forcing
class and its modal logic, Israel Journal of Mathematics. 207(2)(2015).

[4] Saveliev, D.I., Shapirovsky, I.B., On Modal Logics of Model-Theoretic Relations, Stud
Logica 108, 989–1017 (2020).

39



The Logic Algebra and Truth Degrees (LATD) 2025

Medvedev Logic and Combinatorial
Geometry

Maria Bevilacqua1, Andrea Cappelletti2, and Vincenzo Marra3

Université catholique de Louvain, Belgium 1

Università degli Studi di Salerno, Italy 2

Università degli Studi di Milano, Italy 3

maria.bevilacqua@uclouvain.be1

acappelletti@unisa.it2

vincenzo.marra@unimi.it3

Medvedev logic, or the logic of finite problems, is a well-known intermediate logic first
introduced by the Russian mathematician Medvedev in his 1963 article [10]. It may
be semantically defined as the logic of the Kripke frames {(Subn∖{∅},⊇)}n∈N, i.e. the
powersets Subn of finite non-empty sets ordered by reverse inclusion, with the empty
subset removed. For background and references on Medvedev logic we refer to [5]. By the
Medvedev variety we mean the subvariety of Heyting algebras corresponding to Medvedev
logic, i.e. the closure under homomorphic images, subalgebras, and products of the Heyt-
ing algebras of upper-closed subsets of the posets {(Subn∖{∅},⊇)}n∈N.
Connections between Medvedev logic and cellular structures—notably, simplicial com-
plexes—have long been known among specialists.1 Indeed, the Medvedev frame
(Subn∖{∅},⊇) is the poset of faces of an n-dimensional simplex ordered by reverse in-
clusion. The aim of this contribution is to initiate a systematic investigation of such
connections. We discuss here two categories of central importance in combinatorial ge-
ometry, finite simplicial complexes and simplicial sets; in the manuscript [3], currently in
preparation, we offer a more extensive treatment including, among others, ordered and
infinite complexes, ∆-sets, and symmetric simplicial sets. It is to be hoped that these se-
mantics based on combinatorial geometry may eventually become a further tool to tackle
questions about Medvedev logic, which is notoriously difficult to analyse.

Simplicial Complexes

A classical treatment of simplicial complexes is [2]; for a contemporary account, see e.g.
[6].
A (finite) simplicial complex Σ on the set of vertices V is a set of subsets of the finite set
V such that the following conditions are satisfied.

1. Each member of Σ is non-empty.

2. For each v ∈ V , {v} ∈ Σ.

3. For each σ ∈ Σ and for each ∅ ≠ τ ⊆ σ, τ ∈ Σ.
1The third-named author would like to record his gratitude to Valentin Shehtman for having shared

with him his extensive knowledge of the literature on Medvedev logic on the occasion of a visit to the
University of Milan.

40



The Logic Algebra and Truth Degrees (LATD) 2025

Let us write vrtΣ for the set of vertices of Σ. For simplicial complexes Σ and ∆, a
simplicial map Σ→ ∆ is a function f : vrtΣ −→ vrt∆ such that f [σ] ∈ ∆ holds for each
σ ∈ Σ, where f [−] denotes the direct image along f . Simplicial complexes and simplicial
maps form a category S.
Subobjects of an object Σ of S are known as subcomplexes of Σ; they may be identified
with the simplicial complexes ∆ on some set of vertices W ⊆ vrtΣ such that δ ∈ Σ for
each δ ∈ ∆. We write SubΣ for the set of subcomplexes of the complex Σ. It is elementary
that SubΣ under inclusion order is a finite distributive lattice with top Σ and bottom the
empty subcomplex. It follows SubΣ has a unique structure of Heyting algebra. Write
M for the full subcategory of Heyting algebras on those algebras isomorphic to SubΣ for
some simplicial complex Σ. The subobject functor

Sub: S −→ Mop (0.1)

acts contravariantly on simplicial maps f : Σ → ∆ by inverse images (pullback of sub-
objects along f) in the standard manner. It is not difficult to prove Sub is part of a
dual equivalence of categories. The explicit description of the adjoint Mop → S, also
not difficult, is conceptually interesting in that it features the representation of simplicial
complexes as a category of finite spaces and open maps; we omit details for reasons of
space, and state our first result as:

Theorem 1. The functor (0.1) is part of a dual equivalence of categories between S and
M. Moreover, the variety generated by the class of objects of M is the Medvedev variety,
and so the logic of the category S of finite simplicial complexes is Medvedev logic.

Presheaf Toposes

For background on topos theory, and on presheaf toposes in particular, please see e.g. [8].
A presheaf category is a category whose objects are presheaves on a small category C,
i.e. contravariant functors from C to Set, and whose maps are natural transformations
between them. We denote by Ĉ the category of presheaves on C. A subpresheaf G of
F in Ĉ is a subobject in the presheaf category, namely a class, up to isomorphism, of a
monomorphism from G to F . Since a presheaf category turns out to be an elementary
topos, it is also referred to as a presheaf topos.
A general fact concerning toposes is that, given an arbitrary topos E and an object X in
it, the set of subobjects SubX of X can be equipped with a natural structure of Heyting
algebra. In case the topos is a presheaf category, for every presheaf F the Heyting algebra
SubF is complete, being the identity on F the top and the natural transformation from
the terminal functor to F the bottom.
We will provide a criterion that is helpful in identifying the intermediate logic determined
by certain presheaf toposes. By definition, the intermediate logic determined by an ar-
bitrary topos E is the logic uniquely associated with the variety generated by the class
of Heyting algebras SubX, as X ranges over all objects of E. This coincides with the
intermediate logic of all fomulæ valid in the internal Heyting algebra structure of the
subobject classifier of E, though we will not detail this fact here.
For presheaves, matters simplify. By standard general theory, the intermediate logic of
a presheaf topos Ĉ is determined by subobjects of the representable functors only, i.e.
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by the Heyting algebras Sub(hom(−, X)); the elements of such algebras may in turn be
identified with sieves on the object X. Building on this, Ghilardi in [7] showed how to
construct out of the slice categories C/X a Kripke frame whose logic coincides with that
of Ĉ.
Moreover, we observe that if C admits a specific factorisation system then the Heyting
algebras of subobjects of representable functors are determined by the posets of subobjects
in the site C. Recall a split epimorphism (also called a retraction) in a category is an arrow
r : a→ b such that there exists a section s : b→ a with r◦s the identity on b. The category
C has (split epi/mono) factorisations if each arrow in C factors as a split epimorphism
followed by a monomorphism. We prove:

Theorem 2. Let C be a small category with (split epi/mono) factorisations. Then for
every object X there is an isomorphism of Heyting algebras

Sub(hom (−, X)) ∼= Down(SubX). (*)

The right-hand side of (*) denotes the Heyting algebra of all downward-closed subsets of
the poset SubX.
Hence, under the hypotheses of Theorem 2, the intermediate logic of a presheaf topos Ĉ is
the logic of the opposites of the posets of subobjects (SubX)op, as X ranges over objects
of C.

Simplicial Sets

We finally turn to the presheaf topos of simplicial sets. Any simplicial complex equipped
with a partial order of its vertices that is linear on each simplex determines a simplicial
set in a natural manner. In this sense simplicial sets provide a generalisation of (ordered)
simplicial complexes. In fact, simplicial sets are considerably more general than simplicial
complexes under several respects. Nonetheless, the intermediate logic of the presheaf topos
of simplicial sets is once again Medvedev logic. For background on simplicial sets we refer
e.g. to [9, 6, 8].
The category SSet of simplicial sets is the presheaf topos on the simplex category △,
namely the category of finite non-empty ordinals with morphisms the monotone functions.
We denote by [n] the object of △ given by the totally ordered set with n+ 1 elements.
It is well known, and not hard to prove, that the simplex category △ admits (split
epi/mono) factorizations (for details see e.g. [9]), so Theorem 2 applies. As a consequence,
we infer the intermediate logic of simplicial sets is the one determined by the posets
(Sub[n])op, as n ranges over non-negative integers. But subobjects of [n] (equivalence
classes of monomorphisms in △ with codomain [n]) are uniquely determined by their
set-theoretic images, which are the non-empty subsets of a set with n+ 1 elements.
These considerations lead to the following theorem:

Theorem 3. The intermediate logic determined by the presheaf topos SSet is Medvedev
logic.

Remark 1. In [1] and [4], as well as in a further forthcoming paper, the third-named
author introduced and studied in collaboration with several co-authors the intermediate
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logic associated to classes of compact polyhedra. Without entering details, it is important
to emphasise that in the framework of that research the logic determined by a simplicial
complex is defined as the logic of the poset of simplices ordered by inclusion, as opposed
to the reverse inclusion adopted in the present abstract. The overall picture then changes
altogether. For example, it is proved in [4] that the logic of all simplicial complexes (under
inclusion of simplices) is full intuitionistic logic, in stark contrast to Theorem 1.
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A Dual Proof of Blok’s Lemma
Rodrigo Nicolau Almeida, Nick Bezhanishvili, and Antonio M. Cleani

Blok-Esakia Theorem

A modal companion of a superintuitionistic (si) logic L is any normal modal logic above
S4 in which L fully and faithfully embeds via the Gödel translation. The notion of a
modal companion has a rich theory [6, 8, 10, 7, 4, 12, 3], culminating in a result known
as the Blok-Esakia theorem [7, 2]. The latter states that the lattice si logics is completely
isomorphic to the lattice of normal extensions of Grz, via the mapping that sends a si
logic L to the least normal extension of Grz containing the Gödel translations of all
theorems of L.
The literature contains several proofs of the Blok-Esakia theorem. Blok’s original proof
[2] is algebraic and notoriously involved (see also [11]). Esakia appears to have given
a dual proof, which remains unpublished. Zacharyaschev later gave a proof using the
machinery of canonical formulas [13], which Jeřábek [9] later extended to rule systems
using canonical rules. More recently, Bezhanishvili [1] (see also [5]) offered an alternative
proof based on stable canonical rules, which are algebra-based rules that are to filtration
what Jerabek’s canonical rules are to selective filtration.
Our contribution is to show that the proof by Bezhanishvili and Cleani can be carried
out without the machinery of stable canonical rules. Moreover, the key idea of that proof
can be adapted to obtain a dual, order-topological proof that resembles Blok’s original
algebraic one, and gives some intuitions on it.

Blok’s Lemma

We begin with some preliminary definitions. Let H be a Heyting algebra. The modal
algebra σH is constructed by expanding the free Boolean extension B(H ) of H with
the operator

a :=
∨
{b ∈ H : b ⩽ a}.

It is well known that σH is always a Grz-algebra.
Conversely, given an S4-algebra M , the skeleton ρM of M is simply the Heyting algebra
of open elements of M . We recall that an element a of M is open when a = a, and
that the Heyting implication of ρM is given by a→ b := (a→ b).
Dually, when X is an Esakia space we let σX := X . Conversely, when Y is an S4-
space, we let ρY be the Esakia space that results from Y by collapsing all clusters, and
endowing the result with the quotient topology under the cluster collapse mapping. The
algebraic and topological versions of the mappings σ, ρ are dual to one another.
A Grz-algebra M is called skeletal when it is isomorphic to σρM . Blok derives the Blok-
Esakia theorem as a consequence of the following Lemma, now widely known as Blok’s
Lemma.
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Lemma 1 (Blok’s Lemma). Let M be a Grz-algebra. Then M ∈ ISPU(σρM ).

Let M ,N be modal algebras and let A ,B be Boolean subalgebras of M ,N respectively.
A mapping h : A → B is called a -homomorphism when it is a Boolean homomorphism
and h( a) = h(a) whenever a ∈ A. The key step in Blok’s proof of Lemma 1 is the
following result.

Lemma 2 (Algebraic embedding lemma). Let M be a Grz-algebra and let N be a finite
Boolean subalgebra of M . Then there is a -embedding h : N → σρM .

The proof given in [1], in turn, makes use of stable maps between modal spaces:

Definition 1. Given modal spaces X = (X,R) and Y = (Y,R), a continuous function
f : X → Y is said to be stable if f(x)Rf(y) holds whenever xRy. Given D ⊆ Clop(X )
we say that f satisfies the bounded domain condition (BDC) with respect to D if for all
U ∈ D, if f(x)Ry and y ∈ U , then there is some x′ such that xRx′ and f(x′) ∈ U .

Given Y a finite S4-space, and D a domain, J (Y,D) denotes the stable canonical rule.
Bezhanishvili and Cleani show that for a Grz-space X, X ⊮ J (Y , D) implies ρX ⊮
J (Y , D), which amounts to showing the following lemma:

Lemma 3. Given a Grz-space X = (X,R), a finite S4-space Y = (Y,R), and a
surjective stable map p : X → Y satisfying the BDC for a domain D, there is a stable
surjection p′ : ρX → Y satisfying the BDC for the domain D.

One can then show the following:

Proposition 1. The following statements are equivalent:

1. Blok’s Lemma;

2. The algebraic stable embedding lemma;

3. The stable surjection lemma.

Step-by-Step Proofs of Blok’s Lemma

By considering the specifics of the algebraic proof of Blok’s lemma and the order-
topological one of [1], we will obtain a new dual proof which closely mirrors the original
one of Blok. This starts with the following:

Lemma 4 (Algebraic one-step embedding). Let M be a Grz-algebra and let N be a
finite Boolean subalgebra, such that h : N → σρM is a -embedding fixing all open
elements. If x ∈ M is arbitrary, then there are finitely many open elements C, and a

-embedding h′ : ⟨N ∪ {x} ∪ C⟩ → σρM such that h′ ↾N = h.
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Indeed, having this lemma, and an arbitrary finite Boolean subalgebra N , one enumerates
N = Nop ∪ {x1, ..., xn} where Nop = ⟨{ a : a ∈ N }⟩. Then one sets N0 = Nop, and
successively adds one element, creating a sequence of algebras:

N0 → N1 → ...→ Nn

where N ⊆ Nn. Having a -embedding of the latter algebra gives us a -embedding of
N . It is the way that such elements are picked which demands the Grz-axiom: given
Nk, to extend the embedding to ⟨Nk ∪ {xk+1}⟩ one needs only define the image of xk+1.
This is done by picking, for each c ∈ Nk, an element element wc which is defined, by
letting uc = ¬xk+1 ∨ c as:

wc := ¬( (u→ u)→ u).
The use of the Grz-axiom lies in ensuring that ( (u → u) → u) ⩽ u; dually, this
follows if:

u ⩽ 3πu

where πu = u ∧ ¬3(3u ∧ ¬u). This is called by Esakia the rest of u; dually, given a
clopen U , πU is called the set of passive points of U , and it is known that the Grz-axiom
corresponds to every point in U being below a passive point.
Applying the key idea of the proof of [1, Main Lemma], one can obtain a dual step-by-
step proof of Blok’s lemma. Given a space X , let ρ : X → ρX be the cluster collapse
continuous map. Moreover, a surjection ϱ : X → Y is called a cluster-reducing map
when it is the quotient map induced by some equivalence relation on Y that never relates
points belonging to different clusters in X .

Lemma 5 (Dual one-step surjection). Let X = (X,R),Y = (Y,R) and Y ′ = (Y ′, R) be
S4 spaces with the following properties.

• X = (X,R) is a Grz space;

• Y ′ = Y ⊔ {•} and there is a cluster-reducing map ϱ : Y ′ → Y which identifies •
with some point in its cluster, but does not identify any other points;

• There is a stable surjection f : X → Y ′ satisfying the BDC for some D ⊆ Y ′;

• There is a stable surjection g : σρX → Y satisfying the BDC for ϱ[D].

Then there is a stable map h : σρX → Y ′ satisfying the BDC for D.

We now sketch the main idea of the proof. Let x ∈ Y ′ be unique with ϱ(x) = ϱ(•). If y /∈
{x, •}, we can set h−1[y] = g−1[ϱ(y)]. Note max(f−1[•]) and max(f−1[x]) are disjoint and
closed. Moreover, because X is a Grz-space, both these sets consist entirely of passive
elements. Consequently, their images U• := ρ[max(f−1[•])] and Ux := ρ[max(f−1[x])] are
closed in σρX . Now, U• and Ux are contained in the clopen U := ρ(f−1{x, •}), thus we
can partition U in two clopens Vx ⊇ Ux and V• ⊇ U•. We then put h−1(x) = Vx and
h−1(•) = V•. So h is a stable surjection that satisfies the BDC for D, as desired.
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Having obtained Lemma 5, we prove Blok’s lemma following the algebraic proof strategy.
Given a finite S4-space Y = (Y,R), we set Y0 = σρY and form the inverse chain

Y0 ← Y1 ← ...← Yn

where Yn = Y , and Yi+1 is obtained as some cluster-expansion of Yi by one additional
element; the existence of the surjections in the chain being guaranteed by Lemma 5. The
algebra N0 is the dual of Y0, and the posets Yk – whilst not being isomorphic to the
dual of Nk – can be seen as refinements of the decomposition given by the algebraic
construction.
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Simplicial complexes are a well-known semantic framework in combinatorial topology to
model synchronous and asynchronous distributed systems. A common type of faults con-
sidered in synchronous computation is crash failures. In a system with crash failures,
each live process may be uncertain regarding which of the other processes have already
crashed. In simplicial complexes, this is modeled semantically by considering so-called
impure simplicial complexes. In this extended abstract, we discuss which object language
is appropriate and expressive enough to reason about synchronous distributed systems
with crash failures using the impure simplicial semantics.
Epistemic logic investigates knowledge and belief, and change of knowledge and belief, in
multi-agent systems [16, 9, 5]. Knowledge change was extensively modeled in temporal
epistemic logics [20, 13, 8] and in dynamic epistemic logics [1, 6, 19]. Epistemic logical
semantics is often based on Kripke models, that consist of an abstract domain of global
states, or worlds, between which binary relations of accessibility (or indistinguishability,
depending on the agents’ epistemic strength) are defined, one for each agent [17].
Combinatorial topology [14] has been used in distributed computing to model concur-
rency and asynchrony since [10, 18, 3], including higher-dimensional topological proper-
ties [15, 22]. Geometric manipulations such as subdivision have natural combinatorial
counterparts. Simplicial models consist of an abstract set of vertices representing agents’
local states. These agent-colored vertices are combined into sets called simplices, with
a standard chromatic restriction that each simplex contain no more than one vertex per
agent. Global states of the system correspond to those simplices that are maximal with
respect to set inclusion and are called facets. Pure simplicial complexes correspond to
distributed systems without crashes, hence, require that each facet contain exactly one
vertex for each of the agents. Crashed agents are modeled by allowing facets to have fewer
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vertices than the total number of agents, with the understanding that all agents missing
from a facet are dead, i.e., have crashed, whereas all agents present in the facet (as a
single vertex) are alive. The collection of sets of vertices (simplices) in a given simplicial
model is assumed to be downward closed with respect to set inclusion, with the exception
of the empty set. Proper subsets of any facet are called faces and can be viewed as partial
global states of the system.
In lieu of giving a lengthy formal definition [7], in Fig. 1 we provide examples of one pure
(C1) and two impure (C2 and C3) simplicial models for a distributed system with three
agents a, b, and c:

C1

X1 Y1

1b

0c

1b

1c

0a

C2

X2

Y2

1b 1b

1c

0a

C3

1b

1c

0aX3

Y3

Figure 1: Impure and pure simplicial models

Each model Ci consists of two facets Xi and Yi (global states) that agent a cannot dis-
tinguish, as evidenced by its vertex (local state) 0a belonging to both. Model C1 is pure
because its two facets (two gray triangles) X1 and Y1 consist of three vertices (one per
agent) each. Thus, a is sure that all agents are alive and knows the value of b’s variable
as it is true (depicted as 1b) in both X1 and Y1. On the other hand, a does not know the
truth value of c’s variable as it is false (0c) in X1 and true (1c) in Y1. Models C2 and C3
are impure because each contains at least one facet with strictly less than three agents:
agent c is dead in X2 of C2 and in X3 of C3, and, additionally, agent b is dead in Y3 of
C3. Note that facets X2, X3, and Y3 in the impure models C2 and C3 are edges that can
also be found in the pure model C1. However, there the corresponding edges are sides
of triangles, or in simplicial complex terms, are faces of larger facets X1 and Y1, without
being facets themselves. In both C2 and C3, agent a is unsure whether c is alive (and,
additionally, whether b is alive in C3).
Note that we have already smuggled a small change from the standard logical language in
the form of local propositional variables pa, pb, qb, etc. They originate from the notion of
an agent’s local state in distributed systems, which is always known by the agent. Thus,
a propositional variable pa pertaining to the local state of a should be known by a, as
formalized by the locality axiom Kapa ∨ Ka¬pa where modality Ka represents agent a’s
knowledge [11, 7]. Local variables represent a natural but not the only choice. A logic of
impure simplicial complexes with standard propositional variables that are unattached to
any agent (global) can be found, e.g., in [12].
We believe that a proper logic for distributed systems should include both types of vari-
ables: local variables for describing agents’ local states and global variables describing
global properties of the system that need not be known to any agent. For instance, asyn-
chronous systems are typically modeled to have global time that no agent has access to,
making this global time a good example of a global variable that does not belong to any
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agent and is, generally, not known by any agent. Logically, this would be realized by
applying the locality axiom to local variables only.
The dichotomy of local and global variables is not the only choice that has been considered.
Another non-trivial question regards the effect agents’ crashes have on the knowledge of
live agents, in particular, on their knowledge of the local variables of crashed agents.
Consider again impure models C2 and C3 in Fig. 1. Does agent a know the value of, say,
b’s variable pb there? The only obvious answer is that the value of pb is known in C2 as it
is true in both X2 and Y2.
But what happens with pb in facet Y3 of model C3? And what does a know about it in
facet X3? Were pb a global variable, as in [12], its truth value would have been determined
by the whole facet Y3, and the crash of agent b would not affect it. On the other hand,
there is no universally acceptable way of assigning a truth value to a local variable pb
in facet Y3. This prompted the introduction of the third truth value ‘undefined’ in [7].
Propositionally, this value is treated according to the 3-valued Weak Kleene Logic, with
the undefined value “infecting” any propositional formula it participates in. The question
about knowledge in presence of undefined values is more subtle. In global state X3 of
model C3, given that pb is undefined in Y3, (i) should a know pb to be true based on X3
alone, the sole facet where pb is defined or (ii) should a not know pb to be true because
it is not true in Y3, which a considers possible? Both options may seem reasonable at
first but option (ii) has an undesirable consequence for the dual modality K̂a := ¬Ka¬,
which stands for a considers it possible. Indeed, if C3, X3 ⊭ Kapb according to (ii), then
C3, X3 ⊨ K̂a¬pb, i.e., agent a would have consider it possible that pb is false despite it
not being false in any facet of C3. This consideration explains why option (i) was chosen
in [7]. It should be noted that the resulting logic is different from the way modalities work
in [4].
The resulting epistemic logic of impure simplicial complexes, based on 3-valued Weak
Kleene Logic on the propositional level and with local variables only, was axiomatized
in [21]. The difficulty was that, as we soon discovered [2], it did not satisfy the Hennessy–
Milner property for the natural notion of bisimulation. Worse than that, we have shown
that no reasonable local definition of bisimulation relying on the standard back-and-forth
relations would have Hennessy–Milner [21].
A failure of Hennessy–Milner often means that the language is not expressive enough. And
the property lacking expressivity in terms of local variables only was quite obvious. Above,
while we used the term “know”, corresponding to the Ka modality for local variables, we
resorted to “is sure that” regarding agents being alive or dead. The reason for this was that
the latter was not expressible in the language with local variables only [2]. Hence, using
“know” would have been misleading. Since one of the objectives in a distributed systems
with crash failures is to reason in presence of crash failures, a language not expressive
enough to talk about these crash failures in the object language is suboptimal.
Thus, based both on the desired applications and on the logical evidence of insufficient ex-
pressivity, we believe that the object language for the logic of impure simplicial complexes
should include both local and global variables and that these global variables should, at
the minimum, include atoms expressing that a particular agent is alive. In [2], we have
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shown that the logic with such atoms a for each agent a does indeed possess the Hennessy–
Milner property. We are currently preparing for submission a manuscript with a complete
axiom system for this logic, which extends that from [21] for local variables only.
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Free Heyting algebras play a fundamental role in the study of the intuitionistic proposi-
tional calculus IPC because they arise as Lindenbaum-Tarski algebras, whose elements are
equivalence classes of propositional formulas over a fixed set of variables modulo logical
equivalence in IPC. Esakia duality (see [10]) proved to be a powerful tool for understand-
ing the structure of free Heyting algebras, which are notoriously difficult to describe.
Recall that a Stone space is a topological space that is compact, Hausdorff, and has a
basis consisting of clopen (i.e., closed and open) subsets.
Definition 1. An Esakia space is a Stone space X equipped with a partial order ≤ such
that

(1) ↑x := {y ∈ X : x ≤ y} is closed for every x ∈ X,

(2) ↓V := {x ∈ X : x ≤ y for some y ∈ V } is clopen for every V ⊆ X clopen.

Every Esakia space X gives rise to the Heyting algebra ClopUp(X) of the clopen upsets
of X ordered by inclusion, where U ⊆ X is an upset if ↑x ⊆ U for every x ∈ U . Vice
versa, the prime spectrum Spec(H) of a Heyting algebra H, which is the set of the prime
filters of H, becomes an Esakia space once ordered by inclusion and suitably topologized.
This correspondence extends to Heyting homomorphisms between Heyting algebras and
continuous p-morphisms between Esakia spaces, where f : X → Y is a p-morphism if
f [↑x] = ↑f(x) for every x ∈ X.
Theorem 1 (Esakia duality). The category of Heyting algebras and Heyting homomor-
phisms is dually equivalent to the category of Esakia spaces and continuous p-morphisms.

Different methods to study the Esakia duals of free Heyting algebras have been developed.
Universal models, first investigated in [19, 4], describe the points of finite depth of the
Esakia duals of finitely generated free Heyting algebras (see, e.g., [5, Sec. 3]). A different
approach, known as the step-by-step method and developed in [20, 12], builds the Esakia
duals of finitely generated free Heyting algebras as the inverse limits of systems of finite
posets. This approach has been recently generalized beyond the finitely generated setting
[2]. However, due to the complexity of free Heyting algebras, obtaining a tangible and
complete description of their Esakia duals seems difficult—if not impossible—particularly
for those that are free over infinitely many generators. This naturally leads us to consider
free algebras in subvarieties of the variety of Heyting algebras. We will turn our attention
to free Gödel algebras.
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Definition 2. A Gödel algebra is a Heyting algebra satisfying the prelinearity axiom
(x→ y) ∨ (y → x) = 1.

The variety GA of Gödel algebras is generated by the totally ordered Heyting algebras
and provides the algebraic semantics for the superintuitionistic propositional logic known
as the Gödel-Dummett logic [8]. This logic has attracted much attention, partly because
it can also be regarded as a fuzzy logic (see, e.g., [3] and [18, Sec. 4.2]).
It is well known that Esakia duality restricts to a duality for Gödel algebras. An Esakia
space X is called an Esakia root system if the order ≤ on ↑x is total for every x ∈ X.

Proposition 1. The category of Gödel algebras and Heyting homomorphisms is dually
equivalent to the category of Esakia root systems and continuous p-morphisms.

As all finitely generated Gödel algebras are finite [16], GA is a locally finite variety. The
Esakia duals of finitely generated free Gödel algebras were described in [13], while the
Esakia duals of Gödel algebras free over finite distributive lattices1 were described in [1].

Definition 3. A Gödel algebra G is said to be free over a distributive lattice L via a
lattice homomorphism e : L→ G when the following holds: for every Gödel algebra H and
lattice homomorphism f : L → H, there is a unique Heyting homomorphism g : G → H
such that g ◦ e = f .

G H

L

∃! g

f
e

Our main result generalizes the descriptions of [1] beyond the finitely generated setting
by providing a dual description of Gödel algebras free over distributive lattices, without
any restriction on the cardinality of the lattice. As a consequence, we obtain a dual
description of free Gödel algebras over any set of generators that generalizes the one of
[13]. To provide such a description, we first recall Priestley duality for distributive lattices
(see, e.g., [11]).

Definition 4. A Priestley space is a Stone space X equipped with a partial order ≤
satisfying the Priestley separation axiom: if x, y ∈ X with x ≰ y, then there is a clopen
upset U such that x ∈ U and y /∈ U .

The functors ClopUp and Spec generalize to a correspondence between Priestley spaces
and distributive lattices, yielding Priestley duality

Theorem 2 (Priestley duality). The category of distributive lattices and lattice homo-
morphisms is dually equivalent to the category of Priestley spaces and continuous order-
preserving maps.

1All lattices will be assumed to be bounded and lattice homomorphisms to preserve the bounds.
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We are now ready to describe the construction dual to taking the free Gödel algebra over
a distributive lattice. Let X be a Priestley space. A chain (i.e., a totally ordered subset)
of X is said to be closed when it is closed in the topology on X. We denote by CC(X) the
set of all nonempty closed chains of X. Equip CC(X) with the Vietoris topology, which
is generated by the subbasis { V,3V | V clopen of X}, where

V := {C ∈ CC(X) | F ⊆ V } and 3V := {C ∈ CC(X) | F ∩ V ̸= ∅}.

Define a partial order � on CC(X) by setting C1 � C2 iff C2 is an upset inside C1.
The following is our main result, characterizing the Esakia duals of free Gödel algebras
over distributive lattices.

Theorem 3.

1. If X is a Priestley space, then CC(X) is an Esakia root system.

2. Let L be a distributive lattice and X its Priestley dual. Then the Gödel algebra dual
to CC(X) is free over L.

Let 2 be the Priestley space consisting of the 2-element chain with the discrete topology. It
is well known that for a set S, the ordered topological space 2S with the product topology
and componentwise order is a Priestley space, and that its dual distributive lattice is free
over the set S. As a consequence of this observation and Theorem 3, we obtain a dual
description of free Gödel algebras.

Corollary 1. Let S be a set. Then the Gödel algebra dual to CC(2S) is free over the set
S.

While products of Priestley spaces are simply cartesian products, the products in the
category of Esakia spaces are difficult to describe. Consequently, computing coproducts
of Heyting algebras is a nontrivial task. A generalization of the construction of universal
models was employed in [14] to study the finite depth part of the product of two finite
Esakia spaces, and the step-by-step method has been employed in [2] to obtain a dual
description of binary products of Esakia spaces. We adapt our machinery to describe
arbitrary products in the category of Esakia root systems, generalizing the description
of binary products of finite Esakia root systems from [7]. As a consequence of Esakia
duality, we obtain a dual description of coproducts of any family of Gödel algebras without
restrictions on the cardinalities of the family and of its members.

Definition 5. Let {Yi | i ∈ I} be a family of Esakia root systems. Let ∏i Yi denote the
cartesian product with the componentwise order and product topology, and πi :

∏
i Yi → Yi

the projection onto the i-th component. We define⊗
i∈I

Yi := {C ∈ CC
(∏

iYi
)
| πi[C] is an upset of Yi for every i ∈ I}

and equip it with the subspace topology and order induced by CC
(∏

i Yi
)
.
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Theorem 4.

1. Let {Yi | i ∈ I} be a family of Esakia root systems. Then ⊗i∈I Yi is their product in
the category of Esakia root systems.

2. Let {Gi | i ∈ I} be a family of Gödel algebras and Yi their Esakia duals. Then ⊗i Yi
is dual to the coproduct of {Gi | i ∈ I} in GA.

The proper subvarieties of GA form a countable chain of order type ω, and each of them
is axiomatized over GA by a bounded depth axiom [9, 15] (see [17] for the corresponding
characterization of the extensions of the Gödel-Dummett logic). We denote by GAn the
subvariety of GA consisting of all the Gödel algebras validating the bounded depth n
axiom, and we refer to its members as GAn-algebras. Replacing CC(X) with its subspace
CCn(X), consisting of the nonempty chains in X of size at most n, yields analogues of
Theorems 3 and 4 that provide dual descriptions of free GAn-algebras over distributive
lattices and of coproducts in GAn.
A Heyting algebra is called a bi-Heyting algebra if its order dual is also a Heyting algebra.
The step-by-step method allows to show that every Heyting algebra free over a finite
distributive lattice is a bi-Heyting algebra [12]. Using Theorem 3, we provide a charac-
terization of the Gödel algebras free over distributive lattices that are bi-Heyting algebra.
As a consequence, we deduce that free Gödel algebras are always bi-Heyting algebras.
Surprisingly, we also show that the situation is very different for free GAn-algebras.

Theorem 5.

1. Let G be a Gödel algebra free over a distributive lattice L. Then G is a bi-Heyting
algebra iff the order dual of L is a Heyting algebra.

2. All free Gödel algebras are bi-Heyting algebras.

3. A free GAn-algebra is a bi-Heyting algebra iff it is finitely generated, and hence finite.

These results have been collected in the manuscript [6].
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A canonical result in model theory is the Homomorphism Preservation Theorem (h.p.t.)
which states that a first-order formula is preserved under homomorphisms on all structures
if and only if it is equivalent to an existential-positive formula. A first order sentence φ
in a vocabulary σ is preserved under homomorphisms iff, whenever M |= φ and there
is a homomorphism of σ-structures M → N then N |= φ. A sentence ψ is existential-
positive when it is constructed using only the connectives ∧,∨ and ∃. The h.p.t. is an
example of a preservation theorem, a family of results linking a syntactic class of formulas
with preservation under a particular kind of map and which are standardly proved via
compactness arguments. Rossman [6] established that the h.p.t. remains valid when
restricted to finite structures.

Finite Homomorphism Preservation Theorem A first-order sentence of quantifier-
rank n is preserved under homomorphisms on finite structures iff it is equivalent in the
finite to an existential-positive sentence of quantifier rank ρ(n) (for some explicit function
ρ : ω → ω).

This is a significant result in the field of finite model theory. It stands in contrast to other
results proved via compactness, including the other preservation theorems, where the
failure of the compactness also results in the failure of preservation theorem. [5] Indeed,
Rossman’s proof is a compactness free proof of the finite h.p.t. that can be retroactively
carried out in the general case. More than providing a simple alternative proof, by
avoiding compactness one maintains control of the syntactic shape of the equivalence
existential positive sentence ψ. In particular this allows a comparison of the quantifier
rank of the original sentence and its existential-positive equivalent (the ρ referenced in
the theorem). In the general case this yields the equirank h.p.t. where the quantifier rank
of the equivalent sentence is the same as original.
Adjacently, Dellunde and Vidal [4] established that a version of the h.p.t. holds for a
collection of many-valued models - those defined over a fixed finite MTL-chain. In prior
work [3] we showed how one can extend Rossman’s proof of a finite h.p.t. to many-valued
models defined over the slightly more general UL-chains, in particular establishing a fi-
nite variant to Dellunde and Vidal’s result. In the many-valued setting both the notion
of homomorphism and existential-positive formulas split into a number of interrelated
concepts and this naturally provides a number of possible generalisations of the classical
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h.p.t. Many can be immediately ruled unviable by observing that the ’easy’ direction
of the theorem fails, i.e. that formulas in the syntactic class are not preserved by the
given morphisms. The viable variant directly recoverable from the classical case links
homomorphisms with existential-positive sentences (∃.p) understood as they are classi-
cally. Namely homormohpsims are maps which preserve the modelling of atomic formula
and existential-positive sentences those constructed from just ∧,∨ and ∃ (ignoring any
additional algebraic connectives present in the algebraic signature).

Fixed Finite Homomorphism Preservation Theorem Let P be a predicate lan-
guage, A UL-chain and φ a consistent P sentence over A in the finite. Then φ is equivalent
over A in the finite to an ∃.p sentence ψ iff φ is preserved under homomorphisms. That
is, there is an ∃.p-sentence ψ : ModAfin(φ) = ModAfin(ψ) iff ModAfin(φ) is closed under
homomorphisms.

This generalisation of the classical h.p.t. is one way to precisely express the idea that
the ’classical part’ of many-valued models still behaves classical. Indeed, the strategy
to extend Rossman’s result is via a ’classical counterpart’ to any given many-valued
model, where one demonstrates that this structure behaves well with respect to both
homomorphisms and ∃.p-formulas. This motivates an attempt to study potential preser-
vation theorems for many-valued models that directly address their many-valued nature.
One viable preservation theorem with a more substantive many-valued character links
monomorphisms with strong existential-positive sentences.

Definition Let σ be a (relational) signature and A a complete lattice. A map f : M → N
between two σ-models is a monomorphism iff for all R ∈ σ and m̄ ∈ M RM(m̄) ⩽
RN(f(n̄)).
A sentence ψ is said to be strong existential-positive iff it is constructed using only the
existential quantifier ∃ and algebraic connectives ◦ which are order preserving in all ar-
guments with respect to the lattice order.

A promising strategy to pursue such a result comes from recent work by Abramsky and
Reggio [2]. Building on previous work on game comonads [1], where various model com-
parison games are studied through comands on the category of relational structures, they
developed an category theoretic framework which is used to prove an abstract homomor-
phism preservation theorem. The general categories of interest are axiomatized as arboreal
categories upon which abstracted notions such as game and back-and-forth system are de-
fined. This requires a form of resource indexing yielding a family of subcategories for each
k ∈ ω. These transfer to an extensional category via similarly indexed family of adjunc-
tions called a resource indexed arboreal adjunction (RIAA). The resulting homomorphism
preservation theorem links preservation by the morphisms of the extensional category to
the existence of a morphism between the adjoint images in the arboreal category (denoted
M →E

k N). The classical homomorphism preservation theorem, and its finite variant due
to Rossman, then emerge as one of the prime examples with the category of relational
structures equipped with the Ehrenfeucht-Fraïssé RIAA. To recover the familiar h.p.t.
we require an alignment of the morphism existence relation which in turn is tied to the
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existence of a single equivalent formula. More explicitly, for a set of models D we say that
D is upwards closed with respect to a relation ∇ iff ∀M,N ∈ D if M ∈ D and M∇N
then N ∈ D . The two critical lemmas are then:

Lemma 1 For all σ-structuresM,N and all k > 0 we have Ek(M)→ Ek(N) iffM ⇒∃+FOk

N .

Lemma 2 For all k ⩾ 0 and all full subcategory D of Struct(σ) D = Mod(ψ) for some
∃+FOk iff D is upwards closed with respect to the relation ⇒∃+FOk , defined as for all
ψ ∈ ∃+FOk M |= ψ implies N |= ψ.

They further establish a sufficiency condition for the HP to for a given RIAA, namely
the satisfaction of a series of axioms, two concerning the extensional category (E1-E2)
and four concerning the RIAA adjunction itself (A1-A4). This is used in particular to
establish the abstract HP for the Ehrenfeucht-Fraïssé RIAA.
In this talk we outline the attempt to adapt and apply this framework to many-valued
models. This begins with an outlining of the basic behaviour of many-valued models under
monomorphisms. In the classical case this category is defined relative to a propositional
signature, in the many-valued case it is also defined relative to a fixed complete lattice A.

Proposition Let A be a complete lattice. We use M (P) to denote the category whose
objects are P-models defined over A. The category M (P) is complete and co-complete.

The next step is the construction of a suitably adjusted arboreal category and RIAA
linking it to the category M (P).
These constructions establish that one can fit the category of many-valued models into
the framework of Abramsky and Reggio. The obvious route to then establish a concrete
preservation theorem for monomorphisms is to establish the statements E1-E2 and A1-A4
hold, and the two lemmas transferring the abstract HP result to the familiar one. At the
time of writing these remain conjectural. As is often the case when working with many-
valued models the answer is sensitive to the behaviour of the underlying algebra. Initial
work suggests that when A is finite adaptions of the classical Ehrenfeucht-Fraïssé RIAA
example will suffice, but when A is infinite the situation is significantly more complex.
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Abstract

The axiomatic system introduced by Hájek axiomatizes first-order logic based
on BL-chains. In this study, we extend this system with the axiom (∀xφ)2 ↔ ∀xφ2

and the infinitary rule
φ ∨ (α→ βn) : n ∈ N

φ ∨ (α→ α&β)
to achieve strong completeness with respect to continuous t-norms.

In [8], the author proposed the study of first-order many-valued logics interpreting uni-
versal and existential quantifiers as infimum and supremum, respectively, on a set of truth
values. From the 1963 article by [5], it follows that the infinitary rule

φ⊕ φn : n ∈ N
φ

can be added to the first-order Łukasiewicz calculus to obtain weak completeness with
respect to the Łukasiewicz t-norm. [6] later axiomatized first-order Gödel logic in 1969.
[4] provided a general approach to first-order fuzzy logic, introducing a syntactic logic,
denoted by BL∀, which is strongly complete with respect to models based on BL-chains.
However, the problem of finding an appropriate syntactic logic for models based on con-
tinuous t-norms remained unresolved.
In the propositional case, [4] exhibited a syntactic logic that is strongly complete with
respect to valuations on BL-chains. [7] later proved that by adding the infinitary rule

φ ∨ (α→ βn) : n ∈ N
φ ∨ (α→ α&β)

to the syntactic logic, a strong completeness result can be achieved with respect to valu-
ations on t-norms.
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In the first-order case, quantifiers can exhibit distinct behaviors in a continuous t-norm
compared to a generic BL-chain. For example, the sentence,

∀x(φ&φ)→ ((∀xφ)&(∀xφ)) (RC)

is true in models based on continuous t-norms and is not true in general. Moreover, [3]
demonstrated that standard first-order tautologies coincide with first-order tautologies
over complete BL-chains satisfying (RC).
In this paper we show that by adding Kułacka’s Infinitary Rule and Hájek and Montagna’s
axiom RC to BL∀, a strong standard completeness result can be proven for models based
on continuous t-norms. Thus, this paper aims to contribute to the study of first-order
extensions of propositional logics, such as [1], [2], and [3].
We introduce our logic extending the logic BL∀ with an additional axiom and an infinitary
rule and utilize a Henkin construction to demonstrate that for a given theory Γ and a
sentence φ such that Γ ⊬ φ, there exists an expanded theory Γ∗ that also satisfies Γ∗ ⊬ φ
and possesses additional properties (Henkin property and prelinearity) necessary for the
subsequent construction of a desirable Lindenbaum algebra. Then, a Lindenbaum algebra
is constructed and embedded in a continuous t-norm, with the help of a new version of
a weak saturation result, providing the final prerequisite for the strong completeness
theorem.
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Introduction

Kripke-completeness of modal logics has been extensively studied since 1960s. Thomason
[13] established the existence of Kripke-incomplete tense logics, that is, tense logics which
are not complete with respect to any class of Kripke frames. Later, Fine [8] and van
Benthem [14] found examples of Kripke-incomplete modal logics. Fine [8] raised a question
concerning the degree of Kripke-incompleteness of logics in the lattice NExt(K) of all
normal modal logics. In general, for each lattice L of logics and L ∈ L , the degree of
Kripke-incompleteness degL (L) of L in L is defined as:

degL (L) = |{L′ ∈ L : Fr(L′) = Fr(L)}|.1

In other words, the degree of Kripke-incompleteness of L in L is the cardinality of logics
in L which share the same class of Kripke-frames with L. A logic L is strictly Kripke-
complete in L if degL (L) = 1. A celebrated result on Kripke-incompleteness is the
dichotomy theorem for degree of Kripke-incompleteness in NExt(K) by Blok [3]: every
modal logic L ∈ NExt(K) is of the degree of Kripke-incompleteness 1 or 2ℵ0 . This theorem
was proved in [3] algebraically by showing that union splittings in NExt(K) are exactly the
consistent strictly Kripke-complete logics and all other consistent logics have the degree
2ℵ0 . A proof based on Kripke semantics was given later in [4]. This characterization of
the degree of Kripke-incompleteness indicates locations of Kripke-complete logics in the
lattice NExt(K).
Further results have been obtained on generalizations of degree of Kripke-incompleteness.
The degree of modal incompleteness with respect to neighborhood semantics was investi-
gated in [7, 10, 5]. Dziobiak [7] proved the dichotomy theorem for degree of incompleteness
in the lattice NExt(D⊕ ( np→ n+1p)) w.r.t neighborhood semantics for all n ∈ ω. Litak
[10] studied modal incompleteness w.r.t Boolean algebras with operators (BAOs) and
showed the existence of a continuum of neighborhood-incomplete modal logics extending
Grz. For more on modal incompleteness from an algebraic view, we refer the readers to
[11]. Degree of finite model property (FMP) was introduced in [1], where the following

1To simplify notation, we always write degL0 for degNExt(L0).
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anti-dichotomy theorem for the degree of FMP for extensions of the intuitionistic propo-
sitional logic IPC was proved: for each cardinal κ with 0 < κ ⩽ ℵ0 or κ = 2ℵ0 , there exists
L ∈ Ext(IPC) such that the degree of FMP of L in Ext(IPC) is κ. It was also shown in [1]
that the anti-dichotomy theorem of the degree of FMP holds for NExt(K4) and NExt(S4).
Degrees of FMP in bi-intuitionistic logics were studied in [6].
It is a longstanding open problem whether Blok’s dichotomy theorem holds for extensions
of transitive modal logics such as K4 and S4, or for extensions of the intuitionistic logic
IPC. Since the Blok’s proof relies on non-transitive frames heavily, we need new technique
to solve these problems.
Tense logics are bi-modal logics that include a future-looking necessity modality and a
past-looking possibility modality ■, of which the lattices are substantially different from
those of modal logics (see [9, 13, 12]). However, as far as we know, no characterization
of the degree of Kripke-incompleteness in lattices of tense logics is known. In this work,
we study Kripke-incompleteness in tense logics. We start with the lattice NExt(K4t) of
transitive tense logics. Inspired by the proof for Blok’s dichotomy theorem in [4], we prove
the dichotomy theorem for transitive tense logics, that is, every tense logic L ∈ NExt(K4t)
is of degree of Kripke-incompleteness 1 or 2ℵ0 . By a similar argument, we also show that
dichotomy theorem of the degree of Kripke-incompleteness holds for NExt(Kt).

Main Results

Let L∗ = K4t ⊕ (3⊤ ∨ ♦⊤) and L◦ = Kt ⊕ (3⊤ ∨ ♦⊤). Our main result is the following
theorem:

Theorem 1. Let L ∈ NExt(Kt). Then the following holds:

1. If L ∈ {Kt, L
◦}, then degKt

(L) = 1. Otherwise degKt
(L) = 2ℵ0.

2. Suppose L ∈ NExt(K4t). If L ∈ {K4t, L∗}, then degK4t
(L) = 1. Otherwise

degK4t
(L) = 2ℵ0.

Dichotomy theorems for tense logics and transitive tense logics follow from Theorem 1.
An interesting corollary is that even the inconsistent tense logic Lt is of degree of Kripke-
incompleteness 2ℵ0 , which means that there are continuum many logics in NExt(K4t) with
no Kripke frame.

Proof Idea

In what follows, we report on the proof idea of Theorem 1(2) and the main technique
used.
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Definition 1. A Kripke frame is a pair ⊥ = (X,R) where X ̸= ∅ and R ⊆ X ×X. The
inverse of R is defined as R̆ = {⟨v, w⟩ : wRv}. For every w ∈ X, let R[w] = {u ∈ X :
wRu} and R̆[w] = {u ∈ X : uRw}. For every U ⊆ W , we define R[U ] = ⋃

x∈U R[x] and
R̆[U ] = ⋃

x∈U R̆[x].
For k ⩾ 0, we define Rk

♯ [w] by R0
♯ [w] = {w} and Rk+1

♯ [w] = Rk
♯ [w] ∪R[Rk

♯ [w]] ∪ R̆[Rk
♯ [w]].

Let Rω
♯ [w] = ⋃

k⩾0 R
k
♯ [w]. For all binary relation R, we write R+ for its transitive closure.

Intuitively, Rn
♯ [w] is the set of all points which can be reached from w by an (R ∪ R̆)-

path of length no more than n. Models, truth and validity of tense formulas are defined
as usual. For each n ∈ ω and φ ∈ Lt, we define the formula ∆nφ by: ∆0φ = φ and
∆k+1φ = ∆kφ ∨ 3∆kφ ∨ ♦∆kφ. Then the readers can verify that K̂, w |= ∆nφ iff
K̂, u |= φ for some u ∈ Rn

♯ [w].

Lemma 1. Let L ∈ NExt(K4t). Then L ∈ {K4t, L∗} implies degK4t
(L) = 1.

Proof. By Kripke-completeness of K4t, degK4t
(K4t) = 1. To show degK4t

(L∗) = 1, suppose
there exists L′ ∈ NExt(K4t) such that Fr(L′) = Fr(L∗) and L′ ̸= L∗. Since L∗ is Kripke-
complete, L′ ⊊ L∗ and so 3⊤ ∨ ♦⊤ ̸∈ L′. Thus ({0},∅) ∈ Fr(L′), which contradicts to
Fr(L′) = Fr(L∗).

To prove the second half of Theorem 1(2), we need some auxiliary frame-constructions
which can bring us frames containing long enough zigzags. In what follows, by frames
we mean rooted transitive frames. Let us recall the book-construction of frames from [9,
Section 3]. Consider frames ⊥ = (X,R) and G = (Y, S) such that X ∩ Y = {u}. Then
H = ((X ∪ Y ), (R ∪ S)+) is a frame such that H↾X ∼= ⊥ and H↾Y ∼= G. Since we can
always re-label points in domains of frames, by similar idea, for all frames ⊥ = (X,R),
G = (Y, S) and points w ∈ X and u ∈ Y , we can construct the combination ⟨⊥w+uG⟩
of (⊥, w) and (G, u) by ‘gluing’ ⊥ and G at w and u.
Let ⊥ = (X,R) be a frame. For any n ∈ Z+ and fixed points w, u ∈ X, the n-pages
book ⊥nw,u of ⊥ is constructed by combining n copies of ⊥ at w and u alternatively. An
example of the book construction is given in Figure 1. It is not hard to verify that ⊥ is
a t-morphic image of ⊥nw,u for each n ∈ Z+. As a corollary, for all x ∈ X and n ∈ Z+,
Th(⊥nw,u, x) ⊆ Th(⊥, x).2 Moreover, if ⟨w, u⟩ ∈ R \ R̆, then the book-construction can
provide us frames with long enough zigzags. Formally, the following lemma holds:

Lemma 2. Let ⊥ = (X,R), w, u ∈ X, Rwu and u ̸∈ R[w]. Let n ∈ ω and G = (Y, S) =
⊥4n+2
w,u . Then Sn♯ [x] ̸= Y holds for all x ∈ X.

Now we start to prove the second half of Theorem 1(2). Let L ∈ NExt(K4t) be
an arbitrarily fixed logic such that L ̸∈ {K4t, L∗}. Then L ⊈ L∗. Take any φL ∈ L \ L∗.
Then we can show that φL is refuted by some finite non-symmetric frame. By Lemma 2,
we can prove the following lemma:

2For all frames ⊥ = (X, R) and x ∈ X, we define Th(⊥, x) = {φ ∈ Lt : ⊥, x |= φ}.
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Figure 1: Examples for the book construction

Lemma 3. There is a finite frame ⊥L and wL, uL ∈ X such that ⊥L, wL ̸|= φL and
uL ̸∈ Rmd(φ)

♯ [wL].

Let Z♭ = ω \ {0, 1}. For each I ∈ P(Z♭), we define the general frame FI = (XI , RI , PI)
as follows:

• XI = XL ⊎ (ω ∪ {i∗ : i ∈ I}).

• RI = (RL ∪ {⟨n,m⟩ ∈ ω × ω : n < m} ∪ {⟨i∗, i⟩ : i ∈ I} ∪ {⟨0, uL⟩})+.

• PI is the tense algebra generated by P(XL).

Example 1. Let P be the set of all prime numbers. Then ⊥P is depicted by Figure 2.

FP

• • •• • •
•• •

0 1 2 3 4 5

5∗3∗2∗

· · ·

⊥LR
md(φ)
♯

•
wL •

uL

Figure 2: The frame FP

Let I ∈ P(Z♭) be arbitrarily fixed and take the minimal k ∈ ω such that |⊥L| < k and
XI = RI

k
♯ [v] for all v ∈ XI . For each n ∈ ω and m ∈ Z♭, we define the formulas γn and

γ∗
m as follows:

• γ0 = ■⊥ ∧3■2⊥ ∧3k■k+1⊥ and γl+1 = ♦γl ∧■2¬γl.

• γ∗
m = 3γm ∧ ¬γm−1 ∧■⊥.

Then we can verify that for all n ∈ ω and m ∈ I, the constant formulas γn and γ∗
m

are true at exactly points n and m∗, respectively. Let LI = Log(Fr(L) ∪ {FI}). Clearly,
LI ⊆ Log(Fr(L)) and so Fr(L) = Fr(Log(Fr(L))) ⊆ Fr(LI). Note that for all distinct
I, J ∈ P(Z♭), LI ̸= LJ . Indeed, take any I ⊈ J and i ∈ I \ J , we can show that
¬φL → ∆kγ∗

i ∈ LI \ LJ . Moreover, we have
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Lemma 4. Fr(L) = Fr(LI) for all I ∈ Z♭.

Proof. (Sketch.) Suppose Fr(L) ̸= Fr(LI). Then Fr(L) ⊊ Fr(LI) and there is a frame
G = (Y, S) ∈ Fr(LI) and y ∈ Y such that G, y ̸|= ψ for some ψ ∈ L. Thus FI |=
∆k(γ0 ∧ 3γ1) and so ¬ψ → ∆k(γ0 ∧ 3γ1) ∈ LI . Since ψ ∈ L, FI , 0 |= ( p → p) → p
and FI , 0 |= (γi → 3γi+1) for all i ∈ ω, we have

∆k¬ψ ∧ γ0 → ( ( p→ p)→ p) ∈ LI and {∆k¬ψ ∧ γ0 → (γi → 3γi+1) : i ∈ ω} ⊆ LI .

Since G ̸|= ψ and G |= ¬(γi ↔ γj) for any different i, j ∈ ω, there exists an infinite
strict S-chain ⟨ui : i ∈ ω⟩ ⊆ U such that y = u0 and G, ui |= γi for all i ∈ ω. Take any
propositional variable p ∈ Prop which does not occur in ψ. Then we see that G, u0 ̸|=

( p → p) → p. Hence G ̸|= ∆k¬ψ ∧ γ0 → ( ( p → p) → p), which contradicts
G |= LI .

Since I ∈P(Z♭) is arbitrarily fixed and |P(Z♭)| = 2ℵ0 , we conclude that degK4t
(L) = 2ℵ0 .

Note that L ̸∈ {K4t, L∗} is also chosen arbitrarily, the proof of Theorem 1(2) is concluded.
To show Theorem 1(1), take any L ̸∈ {Kt, L

◦}. Then L ⊈ L◦ and there exists φL ∈ L\L◦.
By the non-transitive book-construction in [9] or the unrevealing construction introduced
in [2], Lemma 3 holds. For each I ∈P(Z♭), we define the general frame F′

I = (XI , R
′
I , PI),

where RI = RL ∪ {⟨n,m⟩ : n < m} ∪ {⟨i∗, j⟩ : i ∈ I and i ⩽ j} ∪ {⟨0, uL⟩}. By similar
arguments, L′

I = Log(Fr(L) ∪ {F′
I}) share the same frames with L and |{L′

I : I ⊆ Z♭}| =
2ℵ0 .
In fact, Theorem 1 is also a generalization of Blok’s characterization of the degree of
Kripke-incompleteness of modal logics. It follows from [9, Theorem 22] that {Kt, L

◦} and
{K4t, L∗} are the sets of union splittings in NExt(Kt) and NExt(K4t), respectively. Thus
we have

Theorem 2. Let L0 ∈ {Kt,K4t} and L ∈ NExt(L0) be consistent. If L is a union splitting
in NExt(L0), then degL0(L) = 1. Otherwise degL0(L) = 2ℵ0.
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This talk presents a new approach logic with two-layered modal syntax. The syntax of
these logics is given by:

• inner formulas build from inner variables using given inner propositional connec-
tives

• atomic outer formulas built from inner formulas using given modalities
• complex outer formulas are built from the atomic ones using given outer proposi-

tional connectives

Early examples of such logics were logics of uncertainty based on Hamblin’s original idea
of reading the atomic outer formulas Pφ as ‘probably φ’ [22] and semantically interpreting
it (in a given Kripke frame equipped with a probability measure) as true iff the probability
of the set of worlds where φ is true is bigger than a given threshold. This idea was later
elaborated and extended by Fagin, Halpern and many others; see e.g. [9, 21].
These initial examples used classical logic to govern the behavior of formulas on both
layers. A departure from this paradigm was proposed by Hájek and Harmancová in [20]
which they later developed in collaboration with Godo and Esteva in [19]. They kept
classical logic to govern the inner layer of events, but proposed Łukasiewicz logic to gov-
ern the outer layer of statements on probabilities of these events. The truth degree of
the atomic outer formula Pφ could then be directly identified with the probability of
the set of worlds where φ is true. Later, other authors changed even the logic governing
the inner layer (e.g., another fuzzy logic in order to allow for the treatment of uncer-
tainty of vague events) or considered additional (possibly non-unary) modalities (e.g. for
conditional probability), see e.g. [17, 16, 25, 18, 12, 11, 8, 14].
This research thus gave rise to an interesting way of combining logics which allows to
use one logic to reason about formulas (or rules) of another one with numerous examples
described and developed in the literature. In our previous work [7], we took the first
steps towards development of a general theory of such logics and proved, in a rather
general setting, two forms of completeness theorem most commonly appearing in the
literature. Although the level of generality seemed quite sufficient back then (finitary
weakly implicative logics with unit and lattice conjunction, see [4]), recent developments
in the field show the need for more: e.g., the inner logic in [2] and the outer logic in [1]
are not weakly implicative, and in the former case they are not even equivalential.
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In an LATD 2022 talk we presented an expansion our theory of [7] to cover even those ex-
amples, the resulting formalism was however rather cumbersome. In this talk, we propose
a radical departure from the usual paradigm by taking, as elementary, the consequence
relation between equations rather than formulas. In many situations it is just a
notational variant, but in all cases it dramatically simplifies and clarifies the used formal-
ism and the proofs on the main results. Our second contribution is a new proof of the
completeness result for finitary logics which has usually involved a rather complex and
cumbersome syntactical translation. In our approach, we first prove the completeness
result of the related infinitary logics (for which we need no translations) and then easily
transform it into the desired result for the finitary case.
Acknowledgement This work was supported by the European Regional Development
Fund project “Knowledge in the Age of Distrust” (reg. no. CZ.02.01.01/00/23_025/0008711).
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Introduction

Ever since Fitch first introduced a modal extension of intuitionistic logic [7], many different
such logics have been put forward. These often differ in their connection between the
modal operators, ranging from no connection at all [2, 16] to one modality being definable
from the other [3], [2, Section 11]. The logic IK is one of myriad intuitionistic modal logics
with a more subtle interaction between the modalities [6, 13, 5, 14]. It can be obtain by
embedding modal logic into first order logic, and then changing this first order logic to
an intuitionistic one.
Akin to the normal modal case, there are various intuitionistic modal logics with monotone
modalities [9, 15, 1, 4]. Interestingly, none of these is obtained from classical monotone
modal logic [11] in the same way IK arises from normal modal logic. We close this gap
by defining the intuitionistic modal logic IMs

1 as the set of formulas whose standard
translation is derivable in a suitable intuitionistic first-order logic, and axiomatising the
resulting logic.
Throughout this abstract, we denote by L the language generated by the grammar

φ ::= p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ | 3φ,

where p ranges over some set Prop of proposition letters. This can be viewed as the
language underlying classical and intuitionistic modal logic with normal or monotone
modalities. The first step in our quest for IMs is to define a suitable first-order logic FOM
that describes (classical) monotone modal logic.

Going monotone

Monotone modal logic M is the extension of classical propositional logic with a modal
operator that satisfies (p → q)/( p → q). We can define 3 = ¬ ¬, which will be
monotone as well. This logic can be interpreted in so-called neighbourhood models.

Definition 1. A neighbourhood model is a tuple (W, γ, V ) consisting of a nonempty set
W , a neighbourhood function γ : W → PPW , an a valuation V : Prop → PW . The

1The analogy of our logic with IK suggests naming it IM, but this is already used in [3, 4] for different
logics. To avoid confusion, we adopt the name IMs. The “s” indicates that our logic is stronger than IM
from [4].
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modal operators can be interpreted via:

M, w ⊩ φ iff there exists a ∈ γ(w) such that for all v ∈ a, M, v ⊩ φ

M, w ⊩ 3φ iff for all a ∈ γ(w) there exists v ∈ a such that M, v ⊩ φ

Taking a first-order perspective of neighbourhood models is not as easy as for Kripke
models, because γ relates worlds to sets of worlds. To get around this, we use a two-sorted
language, with one sort representing the worlds and the other the neighbourhoods [8, 12,
10].

Definition 2. Let FOM be the two-sorted first-order logic with sorts world and nbhd, a
predicate N between world and nbhd, a predicate E between nbhd and world, and a unary
predicate Pi of type world for each pi ∈ Prop.

Then a FOM-structure is a tuple M = (Dw, Dn, N,E, Pi) consisting of sets Dw and Dn
interpreting the sorts, relations N ⊆ Dw×Dn and E ⊆ Dn×Dw, and subsets Pi ⊆ Dw for
each pi ∈ Prop. Every neighbourhood model M = (W, γ, V ) gives rise to a FOM-structure

M◦ =
(
W,

⋃
{γ(w) | w ∈ W}, Rγ, R∋, {V (pi) | pi ∈ Prop}

)
,

where wRγa iff a ∈ N(w) and aR∋w iff w ∈ a. In the converse direction, a FOM-structure
M = (Dw, Dn, N,E, Pi) yields a neighbourhood model M• = (Dw, γ, V ), where V (pi) = Pi
and

γ(x) = {{y ∈ Dw | aEy} | xNa}.
We can define the standard translation stx : L → FOM by:

stx(⊤) = (x = x) stx(φ ∧ ψ) = stx(φ) ∧ stx(ψ)
stx(⊥) = (x ̸= x) stx(φ ∨ ψ) = stx(φ) ∨ stx(ψ)
stx(pi) = Pix stx(φ→ ψ) = stx(φ)→ stx(ψ)

stx( φ) = ∃a.xNa ∧ ∀y.aEy → sty(φ) stx(3φ) = ∀a.xNa→ ∃y.aEy ∧ sty(φ)

Proposition 1. For all φ ∈ L , neighbourhood models M and FOM-structures N, we
have:

M, w ⊩ φ iff M◦ |= stx(φ)[w], N•, w ⊩ φ iff N |= stx(φ)[w].

Going intuitionistic

We now change the first-order logic FOM to the intuitionistic first-order logic IFOM of the
same signature. Note that stx can be viewed as a translation stx : L → IFOM. Then we
can define:

Definition 3. IMs := {φ ∈ L | IFOM |= stx(φ)}.

We can now ask how to axiomatise IMs. It turns out that we can do so as follows:

75



The Logic Algebra and Truth Degrees (LATD) 2025

Definition 4. Let IMAx be the smallest set of L -formulas that contains an axiomatisation
for intuitionistic logic as well as the axioms

(p ∧ q)→ p, 3(p ∧ q)→ 3p, ( p ∧3¬p)→ ⊥ and ( ⊤ → 3p)→ 3p,

and that is closed under modus ponens, uniform substitution, and the congruence rules
p↔ q

p↔ q
and p↔ q

3p↔ 3q
.

We write IMAx ⊢ φ, and say that φ is derivable, if φ is in IMAx.

Alternatively, we can replace the monotonicity axioms and congruence rules for the mono-
tonicity rules (p→ q)/( p→ q) and (p→ q)/(3p→ 3q) to obtain the same logic.
Our main theorem reads:
Theorem 1. For any φ ∈ L , we have φ ∈ IMs if and only if IMAx ⊢ φ.

Going semantic

One way to prove Theorem 3 is via a semantic detour. This not only allows us to use
a routine canonical model construction, but also exposes a new way of thinking about
neighbourhood models in an intuitionistic setting. Theorem 3 follows from the following
three steps.

Step 1. Use IFOM-structures as a semantics for IMs. Since IMs is defined via the
first-order logic IFOM, we can use the first-order structures for IFOM as a semantics for
IMs. An IFOM-structure consists of a poset (W,⩽) with at each world w ∈ W a classical
first-order structure, such that these classical structures increase along ⩽. For example:

Dw1

Sw1

Dw2

Sw2

Dw3

Sw3

w1
d1 d2

a1

w2
d1 d2 d3

a1

w3
d1 d2 d3 d4

a1 a2

⩽

⩽

We can then interpret L -formulas at pairs ⟨w, d⟩ where d ∈ Dw. We let ⟨w, d⟩ ⊩ φ if
w |= stx(φ)[d]. Concretely, we let ⟨w, d⟩ ⊩ pi if d is in the interpretation of Pi at w,
intuitionistic connectives are interpreted as usual in first-order intuitionistic logic, and:

⟨w, d⟩ ⊩ φ iff there exists a ∈ Aw such that dNwa and
for all w′ ⩾ w and d′ ∈ Dw′ , aEw′d′ implies ⟨w, d′⟩ ⊩ φ

(w, x) ⊩ 3φ iff for all w′ ⩾ w and all a′ ∈ Dn(w′),
if xNw′a′ then there exists y′ ∈ Ds(w′) such that a′Ew′y′ and (w′, y′) ⊩ φ
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Let us write FOS ⊩ φ if φ is true in all worlds of all such first-order structures. Then by
definition of IMs and IFOM we have:

Proposition 2. For all φ ∈ L , we have φ ∈ IMs if and only if FOS ⊩ φ.

Step 2. Define intuitionistic neighbourhood models. Taking inspiration from
the first-order semantics, we see that an intuitionistic version of a neighbourhood can
change when moving along the intuitionistic accessibility relation. Guided by this, we
define an intuitionistic neighbourhood as a partial function

a : W ⇀ PW

such that dom(a) = {w ∈ W | a(w) is defined} is upward closed in (W,⩽). An intu-
itionistic neighbourhood model is then given by a tuple (W,⩽, N, V ) such that (W,⩽) is a
poset, V is a valuation that assigns to each proposition letter an upset of (W,⩽), and N
is a collection of intuitionistic neighbourhoods. The modalities are then interpreted as:

M, w ⊩ φ iff there exists a ∈ N such that w ∈ dom(a) and
for all w′ ⩾ w, v ∈ a(w′) implies v ⊩ φ

M, w ⊩ 3φ iff for all w′ ⩾ w and all a ∈ N such that w′ ∈ dom(a)
there exists v ∈ a(w′) such that v ⊩ φ

We write INM for the class of intuitionistic neighbourhood models, and INM ⊩ φ if φ is
valid in all intuitionistic neighbourhood models. A routine canonical model construction
now proves:

Proposition 3. For all φ ∈ L , we have IMAx ⊢ φ iff INM ⊩ φ.

Step 3. Translate between sematnics. Any IFOM-structure gives rise to an intu-
itionistic neighbourhood model whose worlds are given by pairs ⟨w, d⟩ where w is a world
and d ∈ Dw. Conversely, we can transform intuitionistic neighbourhood models into
IFOM-structures. This requires an additional unravelling-like construction which allows
us to construct the required structure of a poset with a domain for each element. If we
do so carefully, we can prove:

Proposition 4. For all φ ∈ L , we have INF ⊩ φ if and only if FOS ⊩ φ.

Conclusion and further work

We have given an intuitionistic monotone modal logic obtained from classical monotone
modal logic via a first-order route. This opens up many avenues for further research.
For example, it would be interesting to study the connection with existing intuitionistic
(monotone) modal logics. Also, the first-order perspective given in this abstract may also
be used to find an intuitionistic non-monotone modal logic.
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This contribution motivates and explains project LFforGDR 10.55776/PAT2141924, re-
cently granted by FWF. The aim of the corresponding talk is not only to inform about
this endeavor and to present preliminary results, but also to elicit reactions and discuss
possible co-operations within the community.

Introduction

Logical reasoning about norms, obligations and permissions is important in many areas,
from philosophy, legal considerations and social decisions to software development and
AI. The development of the field is driven by various problems and puzzles of informal
normative reasoning. For example, it is widely recognized that the adequate formalization
of reasoning with defeasible deontic conditionals requires systems of modal logics that go
beyond the mere addition of a standard (monadic) modal operator O (for ‘it is obliga-
tory’) to classical logic. In particular, many intended applications require a dyadic modal
operator where the semantics of O(φ/ψ) (‘φ should be the case if ψ holds’) refers to a
preference ordering for possible worlds (see [14]). Although this introduces implicit (com-
parative) degrees of ‘goodness’, there is only very little research on logics with explicitly
graded deontic propositions, so far.
Deontic propositions that allow for degrees of truth are anything but exceptional, but
are probably part of the core of informal normative argumentation. The statements ‘You
should not kill innocent children’, ‘You should not lie’ and ‘You should be polite’ are hardly
appropriately categorized as equally true. Linguistic findings, confirm that typical deontic
statements such as ‘Peter should take care of Anna’, ‘Children are allowed to make noise’
or ‘The place should be kept dry’ are gradable, as attested by the applicability of qualifiers
such as very much. probably or barely. Moreover, the sentences that occur within a deontic
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modality are already typically gradable, as these examples show. Some deontic statements
involve the comparison of gradations of applicability, as in ‘The richer one is, the more
one should donate to charity’. For a detailed linguistic account of the gradability of ought
and should, we refer to Section 8.13 of [11], where it is forcefully argued that

In order to model this [documented linguistic] behaviour, we need to treat the
basic form of ought as a scalar predicate associating propositions φ with “the
degree to which φ ought to hold.” [11], p. 249.

Another example that we will take up in Section are questionnaires and opinion polls
where people are asked to indicate on a certain scale (say 0 to 10) to what extent they
agree with certain deontic statements, such as ‘Taxes should be more progressive’ or ‘Class
sizes should be drastically reduced’. Again, note that not only the deontic propositions
themselves, but also the underlying non-modal propositions can reasonably be understood
to admit degrees of truth.
Recognizing that it is appropriate and useful to consider graded deontic logics for logical
models of normative reasoning does not entail that it is clear how such logics should look
like. Indeed, there are many different parameters to consider when defining and examining
such logics. It is not always clear which deontic (monadic or dyadic) modal operators are
most appropriate. If we consider relevant comparative operators, further syntactic and
semantic choices emerge. For example, one might want to model sentences of the form ‘It
is better that F than G’ or of the form ‘Given that H holds, it is just as good that F as that
G’. When generalizing to a many-valued environment, one is confronted with a variety of
options for the choice of a particular base logic. First of all, it is not clear with respect
to which type of scale the relative or partial truth of deontic (and other) propositions
should be comparable. The space of possible algebras for modeling the degrees of truth
is large and diverse, as is known from the literature on mathematical fuzzy logics (see
[5]). But even if one focuses on a particular fuzzy logic with the truth value set [0, 1], e.g.
Łukasiewicz logic or Gödel logic, to represent non-modal sentences, there are still many
ways to extend many-valued semantics to deontic modal operators that scope over them.
We argue that the above challenge to research cannot be adequately met by examining
particular many-valued deontic logics individually. Rather, one should attempt to provide
a logical framework that can be instantiated in different ways to obtain concrete logical
models of reasoning with graded norms, obligations, and permissions. Specifically, the
project aims to develop a comprehensive semantic and syntactic proof-theoretic toolbox
that allows a wide range of graded deontic logics and corresponding proof systems to be
systematically defined, studied and compared.

A logical framework for graded deontic reasoning

Our aim is not just to develop new graded deontic logics, but rather to systematically
explore the space of possibilities for defining such logics and to evaluate the resulting
logics in terms of first principles of reasoning about relative goodness and degrees of
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desirability and of commitments. We briefly describe essential components for such a
logical framework:

Goodness relations: Classical deontic logics with a dyadic obligation operator O(φ/ψ)
refer to a relation between possible worlds that orders these worlds with respect to
their degree of goodness or desirability. Depending on the properties of this order
and the way in which one refers to this order, different deontic logics emerge. For
example, the following have been discussed in the literature for a relation ⪰ (‘at
least as good’) on propositions (see, e.g., Lassiter [11]): p ⪰ q implies ¬q ⪰ ¬p,
p ⪰ q implies p ∧ q ≈ q, or p ⪰ q implies p ⪰ p ∨ q ⪰ q.

Relating degrees of goodness and degrees of truth: Goodness orders and corre-
sponding degrees do not automatically translate into many-valued deontic propo-
sitions. Standard linguist approaches (see, e.g., [11]) suggest to use a context-
dependent threshold value referring to the degree of goodness µ(φ) of a proposi-
tion φ to decide whether an assertion of φ is acceptable (as true) or not. However,
it also viable to identify µ(φ) with a corresponding degree of truth to the proposition
O(φ) (‘It should be the case that φ’). For the meaningfulness and fecundity of the
latter strategy we refer to an analogous approach, due to Esteva, Godo and Hàjek
[16], where ‘probably’ is interpreted as a graded modality by identifying the degree
of truth of Π(φ) (‘Probably φ’) with the probability of an event corresponding to
φ.

Choosing many-valued base logics via semantic games: There is a wide range of
many-valued logics that may be used as underlying reasoning mechanism. In order
to support the choice of suitable base logics we propose to employ semantic games
(evaluation games) that characterize specific many-valued logics with respect to first
principles about reasoning with graded propositions. The most prominent example
of a semantic game of this type is Giles’s game [14] characterizing Łukasiewicz logic
by combining rules for the step-wise reduction of logically complex assertions to
atomic assertions with an evaluation of the latter in terms of ‘risk values’. Giles’s
game has been extended to other logics as well as to generalized (semi-fuzzy) quan-
tifiers (see [10, 5] for an overview). We intend to extend Giles’s game to include
references to possible worlds as well as to goodness orders between worlds and
propositions.

Incorporating uncertainty: Deontic (goodness) values are distinct from epistemic (un-
certainty) values. However, as pointed out, e.g., by Lassiter [11], judgments about
what should/ought to be the case are often not independent from expectations about
the comparative likelihood of possible events. An important starting point for ex-
ploring the combination deontic and probabilistic reasoning is [3]. As the authors
of [3] already indicate, one should consider generalizations of this approach to dyadic
deontic logic, to other underlying base logics, and to various alternative measures
of uncertainty.

Proof systems: We strive for soundness and completeness results for new logics emerg-
ing from the indicated framework. In particular, we claim that semantic games, as

82



The Logic Algebra and Truth Degrees (LATD) 2025

mentioned above, can be lifted to provability games using disjunctive states, which
in turn correspond to analytic proof systems along the line of [6].

Two application areas

We decided to focus on two specific areas of applications within the project. Both are
motivated by previous research of our group on that topics.

Judgment aggregation with graded deontic logics

Among the challenges for the assessment of fragmented and vague information is the
systematic aggregation of opinions of many individuals. Classical Judgment Aggregation
(JA) [10, 12, 13] poses the problem of finding a joint consistent collective judgment for
a given agenda, modeled as a set of logically connected propositional formulas, based
on individual bivalent (yes-no) judgments on the items in the agenda. Our attempts to
generalize corresponding results to degree based deontic reasoning is based on two claims.

Claim A: In soliciting many opinions, one is often interested in what the individuals
think should be done or should be the case.

Claim B: In soliciting opinions on—not only, but in particular—deontic propositions, it
is useful and natural to allow for degrees of assent/dissent.

We will report on preliminary possibility and impossibility results for formal models of
many-valued deontic judgment aggregation, extending recent results from [7].

Grading deontic situations

Puzzles for deontic logics typically deal with scenarios in which the described situation
conflicts with a given norm set. For instance, in Forrester’s paradox, the involved norm
set is (1) “It is forbidden to murder (m)” and (2) “If one murders, one has to murder
gently (g)”. The puzzle arises in the situation, where m holds. To solve a deontic puzzle is
to give a model that is consistent with the current situation and optimal with respect to
the set of norms. In the case of Forrester’s paradox, the solution is the situation {m, g},
which is consistent with in conflict with (1) but is consistent with m, satisfies (2), and
is thus preferred over {m,¬g}. In our context of graded deontic logic, the paradigmatic
question arising from this discussion is: How well can a certain situation be resolved
consistently with respect to a given set of norms?
We suggest to apply choice logics like QCL (see, e.g, [1]) to graded deontic scenarios to
tackle this challenge. In this manner, new types of (graded) obligation operators arise.
In particular, we will explore an alternative, game based semantics for the basic choice
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connective of QCL and for induced deontic operators, thus also providing an avenue for
evaluating and expanding the applicability of our general framework.
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We investigate MV-monoids and their subvarieties. An MV-monoid is an algebra
⟨A,∨,∧,⊕,⊙, 0, 1⟩ where:

• ⟨A,∨,∧, 0, 1⟩ is a bounded distributive lattice;

• ⟨A,⊕, 0⟩ and ⟨A,⊙, 1⟩ are commutative monoids;

• ⊕ and ⊙ distribute over ∨ and ∧;

• for every x, y, z ∈ A,

(x⊕ y)⊙ ((x⊙ y)⊕ z) = (x⊙ (y ⊕ z))⊕ (y ⊙ z);
(x⊙ y)⊕ ((x⊕ y)⊙ z) = (x⊕ (y ⊙ z))⊙ (y ⊕ z);
(x⊙ y)⊕ z = ((x⊕ y)⊙ ((x⊙ y)⊕ z)) ∨ z;
(x⊕ y)⊙ z = ((x⊙ y)⊕ ((x⊕ y)⊙ z)) ∧ z.

Every MV-algebra in the signature {⊕,¬, 0} is term equivalent to an algebra that has
an MV-monoid as a reduct, by defining, as standard, 1 := ¬0, x ⊙ y := ¬(¬x ⊕ ¬y),
x ∨ y := (x ⊙ ¬y) ⊕ y and x ∧ y := ¬(¬x ∨ ¬y). We study subdirectly irreducible MV-
monoids and show that every subdirectly irreducible MV-monoids A is totally ordered
and satisfies property: for all x, y ∈ A, x⊕ y = 1 or x⊙ y = 0.
Furthermore, we investigate the bottom part of the lattice of subvarieties of MV-monoids,
characterizing all the almost minimal varieties of MV-monoids as the varieties generated
by:

• a reduct of a finite MV-chain of prime order (Ł+
p );

• the unique MV-monoid C∆
2 on the 3-element chain 0 < ε < 1 satisfying ε ⊕ ε = ε

and ε⊙ ε = 0;

86



The Logic Algebra and Truth Degrees (LATD) 2025

• the dual of C∆
2 .

One of the main tool we used to develop the theory of MV-monoids is the categorical
equivalence Γ between unit commutative ℓ-monoids and MV-monoids [1].
A unital commutative ℓ-monoid is an algebra ⟨M,∨,∧,+, 1, 0,−1⟩ with the following
properties:

• ⟨M,∨,∧,+, 0⟩ is a commutative ℓ-monoid;

• −1 + 1 = 0;

• −1 ≤ 0 ≤ 1;

• for all x ∈M there is n ∈ N such that

(−1) + · · ·+ (−1)︸ ︷︷ ︸
n times

≤ x ≤ 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Thus, the relationship between unital commutative ℓ-monoids and MV-monoids is similar
to the one between abelian ℓ-groups and MV-algebras and we exploit this fact in several
statements of our work.
We also present two versions of Hölder’s theorem for unital commutative ℓ-monoids.

Theorem. Let M be a nontrivial totally ordered unital commutative ℓ-monoid. There
is a unique homomorphism from M to R.

Definition. A unital commutative ℓ-monoid M is Archimedean provided that, for all
x, y ∈M , if for all n ∈ N we have nx ⩽ ny + 1, then x ⩽ y.

Theorem. (Hölder’s theorem for unital commutative ℓ-monoids) Let M be an
Archimedean nontrivial totally ordered unital commutative ℓ-monoid. The unique ho-
momorphism from M to R is injective, and so M is isomorphic to a subalgebra of R.

Particular examples of MV-monoids are positive MV-algebras, i.e. the {∨,∧,⊕,⊙, 0, 1}-
subreducts of MV-algebras or, equivalently, the proper subquasivariety of the variety of
MV-monoids (MVM), axiomatized relatively to MVM by

(x⊕ z ≈ y ⊕ z and x⊙ z ≈ y ⊙ z) =⇒ x ≈ y.

Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical
motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent
quasivariety semantics of any logic in the sense of [2]. In this cancellative setting, we
characterized the varieties of positive MV-algebras.
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Theorem. The varieties of positive MV-algebras are precisely the varieties generated by
a finite set of finite positive MV-algebras. Equivalently, they are precisely the varieties
generated by a finite subset of {Ł+

n | n ∈ N\{0}}, where Ł+
n is the {∨,∧,⊕,⊙, 0, 1}-reduct

of the n+ 1-element MV-chain Łn.

We also proved that such reducts coincide with the subdirectly irreducible finite positive
MV-algebras. Using these results we show that positive MV-algebras form an unbounded
sublattice of the lattice of all subvarieties of MVM.
Indeed, we prove that: a variety of positive MV-algebras is of the form V (KI), where I
is a finite subset of N containing all the divisors of its elements (divisor-closed subsets)

Theorem. The set Λ(MV+) of varieties of positive MV-algebras is in bijection with the
set J of divisor-closed finite sets, as witnessed by the inverse functions:

f : J −→ Λ(MV+) g : Λ(MV+) −→J

I 7−→ V (KI) V 7−→ {n ∈ N \ {0} | Ł+
n ∈ V }.

where we denote by KI is the set of all reducts of MV-chains with cardinality in I.

Furthermore, we present axiomatizations of all varieties of positive MV-algebras, using a
strategy similar to that of Di Nola and Lettieri [3]. To do so, we define the following set
of equations.
Let I ⊆ N be a divisor-closed set, and let m be the maximum of I (with the convention
that m = 0 if I = ∅). We define ΣI as the set of equations given by the single equation

(m+ 1)x ≈ mx (0.1)

union the equations of the form

m((k − 1)x)k ≈ (kx)m (0.2)

for all 1 ⩽ k ⩽ m such that k /∈ I.
For n ∈ N and k ∈ Z we define the unary term τn,k(x) inductively on n as follows:

τ0,k(x) :=
1 if k ⩽ −1,

0 if k ⩾ 0.

τn+1,k(x) = τn,k−1(x)⊙ (x⊕ τn,k(x)),
For every n ∈ N, let Φn be the following set of equations, for k ranging in {0, . . . , n− 1}:

τn,k(x)⊕ τn,k(x) ≈ τn,k(x) and τn,k(x)⊙ τn,k(x) ≈ τn,k(x). (0.3)

Theorem. Let I be a divisor-closed finite set; then V (KI) is axiomatized by Φlcm(I)∪ΣI
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relatively to the variety of MV-monoids, where KI is the set of all reducts of MV-chains
with cardinality in I.

To conclude, in the following table we summarize our axiomatizations of the almost min-
imal varieties of MV-monoids and the varieties of positive MV-algebras.

Variety Axiomatization (within MV-monoids)
V (C∆

2 ) x⊕ x ≈ x

V (C∇
2 ) x⊙ x ≈ x

V (L+
1 ) x⊕ x ≈ x and x⊙ x ≈ x

V (Ł+
n ) τn,k(x)⊕ τn,k(x) ≈ τn,k(x) (for 0 ⩽ k ⩽ n− 1)

τn,k(x)⊙ τn,k(x) ≈ τn,k(x) (for 0 ⩽ k ⩽ n− 1)
V ({Ł+

n | n ∈ I}) (setting l := lcm(I) and m := max I)
(I div.-closed fin. set) τl,k(x)⊕ τl,k(x) ≈ τl,k(x) (for 0 ⩽ k ⩽ l − 1)

τl,k(x)⊙ τl,k(x) ≈ τl,k(x) (for 0 ⩽ k ⩽ l − 1)
(m+ 1)x ≈ mx
m((k − 1)x)k ≈ (kx)m (for 1 ⩽ k ⩽ m s.t. k /∈ I)
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Abstract

Lattice-ordered pregroups (ℓ-pregroups) are exactly the involutive residuated
lattices where addition and multiplication coincide. Among them, for every n, the
n-periodic ℓ-pregroup Fn(Z) of n-periodic order-preserving functions on Z plays an
important role in understanding distributive ℓ-pregroups and also n-periodic ones.
We study the structure of this algebra in great detail and provide order-theoretic
and monoidal-theoretic descriptions. This then paves the way for axiomatizing the
variety generated by Fn(Z), covered in a different submission.

Introduction

A lattice-ordered pregroup (ℓ-pregroup) is an algebra (A,∧,∨, ·,ℓ ,r , 1), where (A,∧,∨) is
a lattice, (A, ·, 1) is a monoid, multiplication preserves the lattice order ⩽, and for all
x ∈ A,

xℓx ⩽ 1 ⩽ xxℓ and xxr ⩽ 1 ⩽ xrx.

We often refer to xℓ and xr as the left and right inverse of x, respectively. The well-studied
lattice-ordered groups (ℓ-groups) are exactly the ℓ-pregroups where the two inverses coin-
cide: xℓ = xr. Also, ℓ-pregroups constitute lattice-ordered versions of pregroups, which are
ordered structures introduced by Lambek [10] in the study of applied linguistics, where
they are used to describe sentence patterns in many natural languages; they have also
been studied extensively by Buzkowski [3] and others in the context of mathematical lin-
guistics in connection to context-free grammars. Pregroups where the order is discrete
(and also pregroups that satisfy xℓ = xr) are exactly groups.
The main reason for our interest in ℓ-pregroups is that they are precisely the involutive
residuated lattices that satisfy x+ y = xy; in that respect their study is connected to the
algebraic semantics of substructural logics [8].
It is easy to show that the underlying lattices of ℓ-groups are distributive, but it remains
an open problem whether every ℓ-pregroup is distributive. Partial answers to this question
include [7], where it is shown that ℓ-pregroups are semidistributive, and [7], where it is
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shown that all periodic (see below) ℓ-pregroups are distributive. We denote by DLP the
variety of distributive ℓ-pregroups.
In analogy to Cayley’s theorem for groups, Holland’s embedding theorem [9] shows that
every ℓ-group can be embedded into a symmetric ℓ-group Aut(Ω)—the group of order-
preserving permutations on a totally ordered set Ω. Also, Holland’s generation theorem
[10] states that Aut(Q) generates the variety of ℓ-groups and this is further used to show
that the equational theory of ℓ-groups is decidable. In [4] it is shown that every distributive
ℓ-pregroup embeds into a functional ℓ-pregroup F(Ω) (a generalization of a symmetric
ℓ-group), where Ω is a chain; actually Ω can be taken to be an ordinal sum of copies of
the integers, as shown in [5]. Under the general definition where Ω is an arbitrary chain,
the algebra F(Ω) consists of all functions on Ω that have residuals and dual residuals
of all orders, but in the special case where Ω is the chain of the integers, F(Z) ends
up consisting of all order-preserving functions on Z that are finite-to-one (the preimage
of every singleton is a finite set/interval). This representation theorem for distributive
ℓ-pregroups is used in [5] to prove an analogue of Holland’s generation theorem: the
ℓ-pregroup F(Z) generates the variety DLP (and that its equational theory is decidable).

For every positive integer n, the functions f in F(Z) that are periodic and have period
n end up being exactly the ones that satisfy f ℓ

n = f r
n and they form a subalgebra of

F(Z), which we denote by Fn(Z); here f ℓ3 = f ℓℓℓ, for example. In [6] it is proved that
DLP is equal to the join of the varieties V(Fn(Z)). This demonstrates the importance of
the varieties V(Fn(Z)), and hence also the algebras Fn(Z), in understanding distributive
ℓ-pregroups. For example, if an equation fails in DLP, it fails in some Fn(Z) (and [6]
further provides a concrete suitable n).
More generally, in an arbitrary ℓ-pregroup an element x is called n-periodic if xℓn = xr

n ;
an ℓ-pregroup is called n-periodic if all of its elements are, and the corresponding variety
is denoted by LPn. As mentioned before, in [7] it is shown that LPn ⊆ DLP, for all n,
and in [6] it is further proved that the join of all of the LPn’s is exactly DLP. Thus
DLP = ∨ LPn = ∨V(Fn(Z)). These two appoximations of DLP are quite different since,
as shown in [6], the variety V(Fn(Z)) is properly contained in LPn for every single n.
Even though LPn ̸= V(Fn(Z)), for every n, Fn(Z) actually plays an important role in
understanding LPn, as well: it is shown in [6] that every n-periodic ℓ-pregroup can be
embedded in a wreath product of an ℓ-group and Fn(Z).

The structure of the algebra

In [6], enough aspects of Fn(Z) are studied in order to obtain the above results and also
the decidability of the equational theory of Fn(Z), for all n. However, the lattice-theoretic
and monoidal-theoretic structure of Fn(Z) has been described only for n = 2, in [7]. In
this contribution we provide a detailed description of Fn(Z), for all n.
Toward describing the monoidal structure of Fn(Z) we first identify two of its submonoids:
bZ and End(n). We denote by b the function x 7→ x+ 1 on Z and by bZ := {bk : k ∈ Z}
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the subgroup that it generates; bZ is an ℓ-group (isomorphic to Z) and it is the largest
subgroup/ℓ-subgroup of Fn(Z) (i.e., the set of all of invertible elements of Fn(Z)). For
each n the maps

σn(x) = x ∧ xℓℓ ∧ · · · ∧ xℓ2n−2 and γn(x) = x ∨ xℓℓ ∨ · · · ∨ xℓ2n−2 ,

are an interior and a closure operator on Z, respectively; also they both have image equal
to bZ. In particular, Fn(Z) is the convex closure of bZ.
For every n ∈ Z, we denote by n the n-element chain 0 < 1 < . . . < n− 1 and by End(n)
the endomorphisms (i.e., order-preserving maps) on n. End(n) forms a distributive lattice
by pointwise order and a monoid under functional composition, and multiplication dis-
tributes over both join and meet; the resulting distributive lattice-ordered monoid (DLM)
is denoted by End(n).
The n-periodic extensions to Z of the functions in End(n) form a subDLM of Fn(Z),
which we denote this subDLM of Fn(Z) by End(n) as well, by abusing notation. We
observe that actually this is only one of the n-many different (overlapping) subDLM of
Fn(Z) that are isomorphic to End(n). We prove that the union of these copies of End(n)
in Fn(Z) is equal to the set of flat elements of Fn(Z), and is contained in the interval
[b1−n,bn−1]; an element x of an ℓ-pregroup is called flat if there exist idempotents y, z
such that y ⩽ x ⩽ z.
We prove that every element of Fn(Z) can be written as a product of the form xy and of the
form y′x′, where x, x′ ∈ End(n) and y, y′ ∈ bZ; thus, Fn(Z) = End(n) ·bZ = bZ ·End(n).
Furthermore, we prove that each of these decompositions is unique. However, Fn(Z) is
not isomorphic to the direct product of End(n) and Z, nor even to a semidirect product
of them.
Let M and N be monoids, where

• ∗ : M ×N → N a left action of M on N: 1 ∗ n = n and m1 ∗ (m2 ∗ n) = m1m2 ∗ n,

• ⋆ : M ×N →M a right action of N in M: m⋆ 1 = m and (m⋆n1) ⋆ n2 = m⋆n1n2,

• m ∗ n1n2 = (m ∗ n1)((m ⋆ n1) ∗m2) and

• m1m2 ⋆ n = (m1 ⋆ (m2 ∗ n))(m2 ⋆ n).

Then N×∗
⋆M = ⟨N×M, ◦, ⟨1, 1⟩⟩, where ⟨n1,m1⟩◦⟨n2,m2⟩ = ⟨n1(m1 ∗n2), (m1 ⋆n2)m2⟩,

is a monoid called the Zappa product of N and M with respect to the two actions. Note
that if ⋆ is trivial (m ⋆ n = m, for all n,m) or ∗ is trivial, then the Zappa product is a
(left or right) semidirect product.

Theorem 1. The monoid reduct of Fn(Z) is isomorphic to the Zappa product End(n)×∗
⋆

Z, where bm ⋆ a = c and a ∗ bm = bk, and c ∈ End(n) and k ∈ Z are the unique elements
such that bma = cbk.
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Now, to describe the order structure of Fn(Z) we describe its poset of join irreducibles.
We define the poset CZ

n := ([0, n− 1]× Z,⩽) by: for (m, k), (m′, k′) ∈ [0, n− 1]× Z,
(m, k) ⩽ (m′, k′) :⇐⇒ m−n m′ ⩽ (k′ −m′)− (k −m).

As usual for m,m′ ∈ [0, n−1], m−nm′ (difference modulo n) is equal to m−m′ if m ⩾ m′

and to m −m′ + n if m < m′. In particular, m −n m′ ∈ [0, n − 1]. Since 0 ⩽ m −n m′,
this definition implies k −m ⩽ k′ −m′. Also, we note that the corresponding covering
relation is

(m, k) ≺ (m′, k′) :⇐⇒ m+ 1 = m′ or (m = m′ and k = k′ +n 1).

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(7, 3)

(2, 2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

Figure 1: The infinite-layered posets CZ
3 and CZ

4 .

Theorem 2. An element of Fn(Z) is join irreducible iff it is meet irreducible. Also, the
poset of join irreducibles of Fn(Z) is isomorphic to CZ

n.

We further define a multiplication on CZ
n by:

(m′, k′) · (m, k) = (m,Sn(k −m′) + k′).
Here, for every n, a ∈ Z, we define Sn(a) := qn, where a = qn+ r, 0 ⩽ r < n and q, r ∈ Z
are given by the division algorithm; i.e., Sn(a) is the largest whole multiple of n below
(and including) a. Note that (CZ

n, ·) is a semigroup isomorphic to the semidirect product
of (Z,+) and the right-zero semigroup on [0, n−1], where the action ∗ : [0, n−1]×Z→ Z
is defined by m ∗ k := Sn(k −m).
Theorem 3. The join irreducibles of Fn(Z) form a partially-ordered semigroup that is
isomorphic to (CZ

n,⩽, ·). Also, the join irreducibles of Fn(Z) are closed under the inverses,
and the corresponding operations on CZ

n are:
(m, k)ℓ := (k−n+1−Sn(k−n+1),m−Sn(k−n+1)) and (m, k)r := (k−Sn(k),m+n−1−Sn(k)).

In view of this result the elements of Fn(Z) can be viewed as downsets of CZ
n; then

the lattice operations are simply union and intersection, while multiplication and the
inversions is simply the element-wise lifting of the multiplication and inversions on CZ

n.
In view of Theorem 1 we also provide an analysis of End(n) as a DLM, and of the positive
cones of End(n) and Fn(Z), via their poset of join irreducibles (as a finitary or one-sided
versions of CZ

n), as well as their multiplicative structure in terms of irreducible generators.
The above analysis can be used to prove the following generation result. The periodicity
of an element is defined to be the smallest positive k such that the element is k-periodic.
Theorem 4. Fn(Z) is generated by any one of its elements of periodicity n.
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It is widely acknowledged that any first-order formula in classical logic is logically identical
to one in prenex form. In general, any set of quantifier prefixes defines a fragment of
first-order logic, specifically the set of prenex formulas that contain one of the quantifier
prefixes in question. In the early stages of research, it was recognised that while some
fragments defined in this way have decidable satisfiability/validity, others do not.
In 1928, P. Bernays and M. Schönfinkel proved the decidability for the class of function-free
sentences with prefixes ∃x̄∀ȳA(x̄, ȳ) (satisfiability) and ∀x̄∃ȳA(x̄, ȳ) (validity) (specifically,
the set of sentences that, when written in prenex normal form, have a prefix containing
quantifiers and the matrix without function symbols) [5]. We will study the decidability
of the Bernays–Schönfinkel class for all Gödel logics. Our argument for validity is based
on the fact that Skolemization is possible for prenex Gödel logics and our argument for
satisfiability is based on the general properties of prenex formulas. We must note that in
Gödel logics validity and satisfiability are not dual as in classic logic.

Definition 1. (Gödel logics). First-order Gödel logics are a family of many-valued logics
where the truth values set (known also as Gödel set) V is closed subset of the full [0, 1]
interval that includes both 0 and 1 given by the following evaluation function I on V

(1) I (⊥) = 0
(2) I (A ∧B) = min{I (A),I (B)}
(3) I (A ∨B) = max{I (A),I (B)}

(4) I (A ⊃ B) =
I (B) if I (A) > I (B),

1 if I (A) ≤ I (B).
(5) I (∀xA(x)) = inf{I (A(u)) : u ∈ UI }
(6) I (∃xA(x)) = sup{I (A(u) : u ∈ UI }

Definition 2. (1-entailment). For a truth value set V , a (possibly infinite) set Γ of
formulas (1-)entails a formula A if the interpretation I on V of A is 1 in case the
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interpretations of all formulas in Γ are 1, i.e., Γ ⊩V A⇐⇒ (∀I , ∀B ∈ Γ : I (B) = 1)→
I (A) = 1.

As a generalization of classical satisfiability, we introduce the following concepts:

Definition 3 (Validity). The formula in Gödel logic is valid if the formula evaluates to
1 under every interpretation.

Definition 4 (satisfiability). The formula in Gödel logic is 1-satisfiable if there exists at
least one interpretation that assigns 1 to the formula.

Validity in Berneys-Schönfinkel class for all Gödel log-
ics is Decidable

Definition 5 (Structural Skolem form). Let A be a closed first-order formula. Whenever
A does not contain strong quantifiers, we define its structural Skolem form as AS = A.
Suppose now that A contains strong quantifiers. Let (Qy) be the first strong quantifier
occurring in A. If (Qy) is not in the scope of weak quantifiers, then its structural Skolem
form is

AS = (A−(Qy){y ← c})S,
where A−(Qy) is the formula A after omission of (Qy) and c is a constant symbol not
occurring in A. If (Qy) is in the scope of the weak quantifiers (Q1x1) . . . (Qnxn), then its
structural Skolemization is

AS = (A−(Qy){y ← f(x1, . . . , xn)})S,

where f is a function symbol (Skolem function) and does not occur in A.

In Gödel logics, valid prenex formulas can be sharpened to validity equivalent purely
existential formulas by Skolemization.

Lemma 1. (Skolemization) For all prenex formulas Qx̄A(x̄) and all Gödel logics G

Γ ⊩G Qx̄A(x̄)⇐⇒ Γ ⊩G (Qx̄A(x̄))S

where Qx̄ is a quantifier prefix and A(x̄) is a quantifier-free formula.

Proof. It is sufficient to prove with A arbitrary and f a new function:

Γ ⊩G ∃x∀yA(x, y)⇔ Γ ⊩G ∃xA(x, f(x)).

It follows then from induction. (⇒) The direction from left to right is obvious.
(⇐) For the other direction, if ⊮G ∃x∀yA(x, y) then for some interpretation I

⊇ {dc | I (∀yA(c, y)) = dc} ⩽ d < 1.
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Using the axiom of choice we can assign a value for every f(c) such that I (A(c, f(c)) is
in between dc and dc + 1−d

2 . As a consequence

⊇ {dc + 1− d
2 | I (A(c, f(c))) ⩽ dc + 1− d

2 } ⩽ d+ 1− d
2 < 1

and thus Γ ⊮G ∃xA(x, f(x)).

Theorem 1. Validity in Berneys-Schönfinkel (BS) class is decidable for all Gödel logics.

Proof. from above lemma follows

Γ ⊩G ∀x̄∃ȳA(x̄, ȳ)⇐⇒ Γ ⊩G ∃ȳA(c̄, ȳ)

for new constants c̄. Suppose there is a countermodel M such that M ⊮G ∃ȳA(c̄, ȳ).
Then there is also a countermodel M ′ such that M ′ ⊮G ∃ȳA(c̄, ȳ) where the domain of
M ′ contains only interpretations of c̄.

Corollary 1. 1) Let ∃ȳA(ȳ) contain only constants c̄, then Herbrand’s theorem holds
for ∃ȳA(ȳ) for all Gödel logics G.

2) Let ∀x̄∃ȳA(x̄, ȳ) prenex formulas contain only constants d̄, then Γ ⊩G ∀x̄∃ȳA(x̄, ȳ)⇐⇒
Γ ⊩G′ ∀x̄∃ȳA(x̄, ȳ) for all infinitely-valued Gödel logics G, G′.

Proof. 1) According to the proof of the above theorem, M ⊮G ∃ȳA(c̄, ȳ) implies M ′ ⊮G

∃ȳA(c̄, ȳ) with restricted domain to constants only.
2) follows from 1), as Herbrand disjunction is contained in ∨

nA(c̄n, d̄n) where c̄n, d̄n are
possible variations of c̄, d̄ and validity for propositional formulas coincides with infinitely-
valued Gödel logics.

Remark 1. Note that 1) is not trivial as prenex formulas and consequently ∃-formulas
(see. Lemma 1) for countable Gödel logics are not r.e.[1].

1-satisfibility in Berneys-Schönfinkel class for all Gödel
logics is Decidable

Lemma 2 (Gluing lemma). Let I be an interpretation into V ⊆ [0, 1]. Let us fix a
value ω ∈ [0, 1] and define

Iω(P) =
I (P) if I (P) ⩽ ω,

1 otherwise

for atomic formula P in L I . Then Iω is an interpretation into V such that
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Iω(B) =
I (B) if I (B) ⩽ ω,

1 otherwise

As an immediate consequence, we have:

Corollary 2. Prenex formulas in Gödel logics admit 1-satisfiability iff they are classical
saitisfiable.

Theorem 2. 1-satisfiability in Berneys-Schönfinkel class is decidable for all Gödel logics.

Proof. The proof is obvious as 1-satisfiability coincides with classical satisfiability and,
therefore, is decidable.

Remark 2. All Gödel logics coincide for the Bernays-Schönfinkel class w.r.t. 1-
satisfiability, but only the infinitely valued Gödel logics coincide for the Bernays-
Schönfinkel class w.r.t. to validity. The Berneys-Schönfinkel fragment of any infinitely-
valued Gödel logic is the intersection of the Bernays-Schönfinkel fragments of the finitely-
valued Gödel logic, both for satisfiability and validity.
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Fuzzy logics are logics of graded truth that have been proposed as a suitable tool for
reasoning with imprecise information, in particular for reasoning with propositions con-
taining vague predicates. Their main feature is that they allow to interpret formulas in
a linearly ordered scale of truth-values, and this is specially suited for representing the
gradual aspects of vagueness. In particular, systems of fuzzy logic have been in-depth
developed within the frame of mathematical fuzzy logic [3] (MFL). Most well known and
studied systems of mathematical fuzzy logic are the so-called t-norm based fuzzy logics,
corresponding to formal many-valued calculi with truth-values in the real unit interval
[0, 1] and with a conjunction and an implication interpreted respectively by a (left-) con-
tinuous t-norm and its residuum, and thus, including e.g. the well-known Łukasiewicz
and Gödel infinitely-valued logics, corresponding to the calculi defined by Łukasiewicz
and min t-norms respectively. The most basic t-norm based fuzzy logic is the logic MTL
(monoidal t-norm based logic) introduced in [6].
In logical systems in MFL, the usual notion of deduction is defined by requiring the preser-
vation of the truth-value 1 (full truth-preservation), which is understood as representing
the absolute truth. For instance, let L be any extension of MTL, which we assume to be
complete w.r.t. the family CL = {[0,1]∗ | [0,1]∗ is a L-algebra} of standard L-algebras.
Then the typical notion of logical consequence is the following for every set of formulas
Γ ∪ {φ}:

Γ |=L φ if, for any [0, 1]∗ ∈ CL and any [0, 1]∗-evaluation e,
if e(ψ) = 1 for any ψ ∈ Γ, then e(φ) = 1 as well.

In [2], Bou, Esteva et al. introduced the degree preserving MTL-logics where they change
the (full) truth paradigm to the degree preserving paradigm, in which a conclusion follows
from a set of premises if, for all evaluations, the truth degree of the conclusion is greater
or equal than those of the premises. For any extension L of MTL complete w.r.t. the
family CL of standard L-algebras the degree preserving variant of L, denoted by L⩽ is
defined as
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Γ |=⩽
L φ if, for any [0, 1]∗ ∈ CL, any [0, 1]∗-evaluation e and for any a ∈ [0, 1],

if e(ψ) ⩾ a for any ψ ∈ Γ, then e(φ) ⩾ a.

As a matter of fact, the degree preserving logic L⩽ is strongly related to the 1-preserving
logic L. Indeed, on the one hand, it holds that |=⩽

L φ iff |=L φ, so both logics share the set
of valid formulas. Moreover, if for any finite set of formulas Γ we let Γ∧ = ∧{ψ | ψ ∈ Γ},
we can observe that

Γ |=⩽
L φ iff |=L Γ∧ → φ,

and hence, iff |=⩽
L Γ∧ → φ. This property can be seen as a sort of deduction theorem for

|=⩽
L.

It has been shown in [2] that in the case the logic L has a complete axiomatisation
with Modus Ponens as the only inference rule, then the logic Ł⩽ admits a complete
axiomatisation as well, having as axioms the axioms of L and as inference rules the rule
of adjunction:

(Adj) φ, ψ

φ ∧ ψ
,

and the following restricted form of the Modus Ponens rule

(r-MP) φ, φ→ ψ

ψ
, if ⊢L φ→ ψ.

If the logic L has additional inference rules

(Ri)
Γi
φ

for i ∈ I, then [4, Proposition 1] shows that L⩽ is axiomatised with the above axioms and
rules together with the following restricted forms of the rules (Ri):

(r-Ri)
Γi
φ
, if ⊢L Γi.

Still, another way of defining different variants of a fuzzy logic is put forward in [1], al-
though for the particular case of Łukasiewicz fuzzy logic. In this approach, the notion
of consequence at work is the non-falsity preservation, according to which a conclusion
follows from a set of premises whenever if the premises are non-false, so must be the
conclusion. In other words, assuming a [0, 1]-valued semantics, this is the case when, for
any evaluation, if truth degrees of the premises are above 0, then the truth-degree of the
conclusion is so as well. For any extension L of MTL complete w.r.t. the family CL of
standard L-algebras we define the following non falsity preserving variant:

Γ |=(0
L φ if, for any [0, 1]∗ ∈ CL and any [0, 1]∗-evaluation e ,

if e(ψ) > 0 for any ψ ∈ Γ, then e(φ) > 0.

The purpose of this talk is to obtain a similar type of axiomatisations for some non-
falsity preserving logics. First observe that for any truth preserving logic L with standard
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semantics and for any formula φ it is obvious that |=L φ implies |=(0
L φ, so the set of valid

formulas of L is contained in the set of valid formulas of the non falsity preserving variant
L(0. Moreover the finitary versions of both logics are strongly related.

Lemma 1. For every pair of formulas φ, ψ the following relation holds:

φ |=(0
L ψ iff ¬ψ |=L ¬φ.

We now focus on logics defined by classes of standard IMTL-algebras (standard MTL-
algebras with an involutive negation). We remind that this means that ∗ is a left-
continuous t-norm such that the residual negation ¬, defined as ¬x = x → 0 =⊇ {y ∈
[0, 1] | x∗ y = 0} satisfies the involutivity condition ¬(¬x) = x. Notable examples of such
t-norms are Łukasiewicz t-norm (which is continuous) and Nilpotent Minimum t-norm.
Assume L is an axiomatic extension of IMTL, complete w.r.t. a class of standard algebras
CL, and whose corresponding notion of proof is denoted ⊢L. It is immediate to observe
that in the case of a IMTL logic L, Lemma 1 can be strengthened in the sense that
the 1-preserving logic L and the non-falsity preserving logic L(0 become interdefinable.
Namely,

(i) φ |=L ψ iff ¬ψ |=(0
L ¬φ, (ii) φ |=(0

L ψ iff ¬ψ |=L ¬φ .

In order to syntactically characterise |=(0
L , the following system nf-L, called the non-falsity

preserving companion of L, is defined in [5] as follows.

Definition 1. The calculus nf-L is defined by the following axioms and rules:

• Axioms of L

• Rule of Adjunction: (Adj) φ, ψ

φ ∧ ψ

• Reverse Modus Ponens: (MPr) ¬ψ ∨ χ
¬φ ∨ ¬(φ→ ψ) ∨ χ

• Restricted Modus Ponens: (r-MP) φ, φ→ ψ

ψ
, if ⊢L φ→ ψ

The above (MPr) rule captures the following form of reverse of modus ponens: if ¬ψ
is non-false then either ¬φ is non-false or ¬(φ → ψ) is non-false. The addition of the
disjunct χ both in the premise and in the conclusion of the rule is needed for technical
reasons.
The following is a syntactic counterpart of part of Lemma 1.

Proposition 1. If ψ ⊢L φ then ¬φ ⊢nf-L ¬ψ.

Thanks to this relation, the logic nf-L has been shown to be complete with respect to the
intended semantics.
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Theorem 1. Let L be an axiomatic extension of IMTL. Then, the calculus nf-L is sound
and complete w.r.t. the finitary logic of L(0.

Note that, as a direct corollary, Definition 1 provides us with complete axiomatisations
of non-falsity preserving companions of prominent IMTL logics like Łukasiewicz logic or
Nilpotent Minimum logic.
We are also able to prove similar result as in the previous theorem without the requirement
of the negation ¬ to be involutive. Indeed, let MTL¬¬ be the (non-axiomatic) extension
of MTL with the rule

(R¬¬) ¬¬φ
φ

.

The algebraic semantics of MTL¬¬ consists of the quasi-variety generated by the class of
MTL-chains A such that its negation ¬ is such that, for any a ∈ A, ¬a = 0 iff a = 1, or
equivalently ¬a > 0 iff a < 1. If L is an axiomatic extension of MTL, let us denote by L¬¬
the extension of L with the rule (R¬¬). If L is complete w.r.t. a class of standard algebras
CL , then L¬¬ is also complete w.r.t. the class of standard algebras CL¬¬ . Moreover, in
L¬¬ we keep having at the semantical level the equivalence between the 1-preserving logic
and the non-falsity preserving logic, in the following sense.

Lemma 2. For any fuzzy logic L, then the following conditions hold:

(i) φ |=L¬¬ ψ iff ¬ψ |=(0
L¬¬ ¬φ, (ii) φ |=(0

L¬¬ ψ iff ¬ψ |=L¬¬ ¬φ.

Then one can define the non-falsity preserving companion of a MTL¬¬-logic and prove
its completeness as follows. In fact, we can restrict ourselves to extensions of MTL logics
with the rule (R¬¬). where ¬(φ∧¬φ) is not a tautology, that is extensions of non SMTL-
logics with the rule (R¬¬). Indeed, note that if L is an SMTL logic, then L¬¬ collapses
into classical logic.

Theorem 2. Let L be an axiomatic extension of MTL that is non-SMTL. Then the
calculus nf-L¬¬, defined by the following axioms and rules:

• Axioms of L

• The rule (R¬¬)

• The rule of adjunction (Adj)

• The rule of Reverse Modus Ponens (MPr)

• The rule of Restricted Modus Ponens (r-MP)

is a sound and complete axiomatisation w.r.t. to the finitary logic of L(0
¬¬.

Finally, we turn our attention to logics preserving lower bounds of truth-values. Let L be
an extension (or expansion) of MTL complete w.r.t. some class of standard L-algebras
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CL, fix some positive value a ∈ (0, 1], we define the logic La as follows:

Γ |=a
L φ if, for any [0, 1]∗ ∈ CL, any [0, 1]∗-evaluation e,

if e(ψ) ⩾ a for any ψ ∈ Γ, then e(φ) ⩾ a.

We will end the talk by discussing some general but sufficient assumptions on L to guar-
antee a finitary axiomatisation of La.
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In this contribution we present some new results concerning the deductive interpola-
tion property in substructural logics, via the study of amalgamation in their equivalent
algebraic semantics which are classes of residuated lattices. In particular, we solve a long-
standing open problem, showing that the following varieties do not have the amalgation
property: MTL-algebras and its involutive and pseudocomplemented subvarieties, IMTL
and SMTL.
Residuated structures play an important role in the field of algebraic logic; their equivalent
algebraic semantics, in the sense of Blok and Pigozzi [1], encompass many of the interesting
nonclassical logics: intuitionistic logic, intermediate logics, many-valued logics, relevance
logics, linear logics and also classical logic as a limit case. Thus, the algebraic investigation
of residuated lattices is a powerful tool in the systematic and comparative study of such
logics.
Let us be more precise; a residuated lattice is an algebra A = (A,∨,∧, ·, \, /, 1) of type
(2, 2, 2, 2, 2, 0) such that: (A,∨,∧) is a lattice; (A, ·, 1) is a monoid; the residuation law
holds: for all x, y, z ∈ A, x · y ⩽ z ⇔ y ⩽ x\z ⇔ x ⩽ z/y, (where ⩽ is the lattice
ordering). Residuated lattices form a variety. A residuated lattice is said to be: integral
if the monoidal identity is the top element of the lattice; commutative if the monoidal
operation is commutative; n-potent if it holds that xn = xn+1; semilinear if it is a subdirect
product of chains.
Residuated lattices with an extra constant 0 are called FL-algebras (since they are the
equivalent algebraic semantics of the Full Lambek calculus, see [8]), and we call them
0-bounded if 0 ⩽ x; bounded if they are integral and 0-bounded. Semilinear bounded
commutative FL-algebras are called MTL-algebras since they are the equivalent algebraic
semantics of the monoidal t-norm based logic MTL [2]. Among the most relevant subvari-
eties of MTL-algebras we have: IMTL-algebras, given by involutive algebras (¬¬x = x),
and SMTL-algebras, i.e. the pseudocomplement subclass (x ∧ ¬x = 0).
Our results use one of the most interesting bridge theorems that are a consequence of
algebraizability: the connection between logical interpolation properties and algebraic
amalgamation properties. We say that a logic L , associated to a consequence relation
⊢, has the deductive interpolation property if for any set of formulas Γ ∪ {ψ}, if Γ ⊢ ψ
then there exists a formula δ such that Γ ⊢ δ, δ ⊢ ψ and the variables appearing in
δ belong to the intersection of the variables appearing both in Γ and in ψ, in symbols
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V ar(δ) ⊆ V ar(Γ) ∩ V ar(ψ).
If the logic L has a variety V as its equivalent algebraic semantics, and V satisfies the
congruence extension property (CEP), L has the deductive interpolation property if and
only if V has the amalgamation property (without the CEP, the amalgamation property
corresponds to the stronger Robinson property, see [8]).
Let us then recall the other necessary notions.

Definition 1. Given a class K of algebras in the same signature, a V-formation is a tuple
(A,B,C, i, j) where A,B,C ∈ K and i, j are embeddings of A into B and C respectively;
an amalgam in K for the V-formation (A,B,C, i, j) is a triple (D, h, k) where D ∈ K and
h and k are embeddings of respectively B and C into D such that h ◦ i = k ◦ j.

A

B

C

D
i h

j k

A class K of algebras has the amalgamation property if for any V-formation in K there is
an amalgam in K.

We focus on the study of the amalgamation property in semilinear varieties of residuated
lattices, solving some long-standing open problems; most importantly, we establish that
semilinear commutative (integral) residuated lattices and their 0-bounded versions do not
have the amalgamation property (i.e., MTL-algebras and their 0-free subreducts).
In order to obtain a failure of the amalgamation property, we use the recent results in [4];
the authors show that in a variety V with the CEP and whose class of finitely subdirectly
irreducible members VFSI is closed under subalgebras, the amalgamation property of the
variety is equivalent to the so-called one-sided amalgamation property of VFSI.

Definition 2. Given a V-formation (A,B,C, i, j), a one-sided amalgam for it is a triple
(D, h, k) with D ∈ K and as for amalgamation h ◦ i = k ◦ j, but while h is an embedding,
k is a homomorphism.

A

B

C

D
i h

j k

A class K of algebras has the one-sided amalgamation property if for any V-formation
there is a one-sided amalgam in K.
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The mentioned result of [4] is particularly useful in varieties generated by commutative
residuated chains; indeed, all commutative residuated lattices have the CEP and a semi-
linear residuated lattice is finitely subdirectly irreducible if and only if it is totally ordered.
Hence, in order to show the failure of the amalgamation property in a semilinear variety
with the congruence extension property, it suffices to find a V-formation whose algebras
are totally ordered, and that does not have a one-sided amalgam in residuated chains.
We do exactly this, and we exhibit a V-formation, which we call V S -formation, given
by 2-potent commutative integral residuated chains that does not have a one-sided amal-
gam in the class of totally ordered residuated lattices. This entails that, if V is a variety
of semilinear residuated lattices with the congruence extension property, and such that
the algebras in the V S -formation belong to V, then V does not have the amalgamation
property. In particular we get the following results.

Theorem 1 ([7]). The following varieties do not have the amalgamation property:

1. MTL-algebras;

2. Semilinear commutative residuated lattices;

3. Semilinear commutative integral residuated lattices;

4. Semilinear commutative FL-algebras;

5. n-potent MTL-algebras for n ⩾ 2.

The result about semilinear commutative residuated lattices has recently been shown in
[5]. Using some algebraic constructions (rotations and liftings) we are also able to adapt
our counterexample to construct a V-formation consisting of, respectively, involutive and
pseudocomplemented FL-algebras; thus in particular we obtain the following:

Theorem 2 ([7]). The following varieties do not have the amalgamation property:

1. IMTL-algebras;

2. SMTL-algebras;

3. n-potent IMTL and SMTL-algebras for n ⩾ 2.

We observe that given the previously mentioned bridge theorem, our results entail that
the logics corresponding to the varieties in Theorems 1 and 2 do not have the deductive
interpolation property.
Finally, we mention that the algebras involved in the V -formation that yields the coun-
terexample can be constructed by means of a new construction that we introduce in order
to be able to construct new chains from known ones. Such construction extends and gen-
eralizes the partial gluing construction in [6], and allows us to find other countably many
varieties of residuated lattices without the amalgamation property.
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The talk will be divided into three parts. The first one will be dedicated to the notion
of internal language in category theory and its foundational significance. The second
part will use the model-theoretic viewpoint to justify the logical status of the Univalence
Axiom. Finally, the rest of the talk will be dedicated to connecting both of the approaches
together in order to justify the idea behind homotopical logic.
Certain categories with rich enough structure (like various kinds of topoi) can be used as a
model of a “mathematical universe”. One can differentiate the use of the internal language
of the category in question, i.e.’reasoning within the universe’, with ’meta-theoretical’ or
external reasoning (which is more similar to the ordinary style of mathematical reasoning),
that is,’reasoning about the universe.’
This opens a possibility for various conceptually interesting interactions. Proving state-
ments internally allows for the generalization of obtained results to a certain extent.
However, I will give a few examples where external and internal presentations of the
same concept do not coincide and why this distinction is important for modern practice
regarding foundations of mathematics, such as univalent foundations.
As one can use set-theoretic constructions to encode all mathematics inside the hierarchy
of sets, the same can supposedly be done with certain categories (e.g., (inf,1)- topoi).
More importantly, if one uses intuitionistic principles internally, but the meta-theoretical
is classical, the proof as a whole can’t be considered constructive. As noted by T. Coquand
[7], initial work on the simplicial model of univalent foundations used classical meta-
theory, which resulted in non-constructive proofs. Thus, internal reasoning can prevent
making unwarranted statements. Furthermore, it allows us to use an appropriately defined
internal language as a tool to internalize principles of meta-theoretical nature, such as
homotopy-invariance, shaping the idea behind homotopical logic (borrowing the name
from A. Joyal’s talk [2]).
The Univalence Axiom states that =U (A,B) ∼= (A ∼= B). The axiom was first introduced
by Voevodsky and was motivated by the idea of homotopy theory, i.e., everything is
considered under "homotopy equivalence". Another way to read the axiom is captured
in S. Awodey’s slogan for mathematical structuralism that "isomorphic structures can be
identified".
In the homotopical interpretation of Martin-Löf’s type theory, types are interpreted as
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spaces, i.e., they are essentially homotopy types of spaces. The introduction of the Axiom
of Univalence into type theory allows to give a formal status to the intuition that any
object is invariant under the homotopy equivalence, i.e. it internalizes the aforementioned
external meta-theoretical principle.
The general idea goes as follows. Given a first-order language, one can formulate a list of
axioms in a given fragment of logic T. T, then, is modeled by some mathematical objects.
For example, having ZFC as a theory, it is modeled by the von Neumann universe V, which
is constructed using the meta-theory. In particular, V is constructed using set theory as
a semi-informal meta-language and, consequently, ZFC will be the object language. From
the foundational point of view, models (or in this case, V) live in some set-theoretic
universe, which is the case in the set-theoretical model theory.
From the perspective of category-theoretic semantics, this just means that "traditional"
set-theoretical models "live" in the category Sets, i.e., semantics is a functor from some
category that represents syntax of a given theory to the universe Sets. Instead of Sets,
we can consider something with more structure, obtaining other kinds of models.
The addition of homotopical interpretation to type theory is essentially about interpreting
identity as a homotopy equivalence. If two types are homotopy equivalent, they are
identical, i.e., there exists an identity type between them. Homotopy theory is a study
of objects invariant under continuous deformation, which presupposes a weaker notion of
identity.
Finally, one can see that it makes perfect sense that the universe corresponding to the ho-
motopical meta-theory above is not Sets and set-theory. In particular, for the intensional
dependent type theory with the Univalence Axiom, correct models can be categorically
described as infinity topoi. HoTT, as a theory, is the presupposed internal language of
these categories. The fact that the Univalence Axiom holds only in "homotopical" mod-
els, makes the shift from set-theoretical foundations to category theory foundationally
justified.
On the one hand, the example above gives a definitive positive answer to the question
why one needs internal language in order to distinguish between different meta-theoretical
principles since the presupposed internal language of the univalent universes is not set-
theoretic.
On the other hand, the categories for which HoTT are supposed to be the internal language
are characterized by weaker invariance criteria. This poses an interesting question about
the logical status of the Univalence Axiom and the justification for homotopical logic.
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Abstract

We aim to formalize the Gibsonian notion of an affordance relation and use
it to explain (i) actions as labeled ternary relations arising from the interactions
between actors and objects in a context (environment), and (ii) relational concepts
as abstractions arising from actions.

The framework

We intend to model affordances and actions in the framework of property and information
systems in the sense of [7] and [6]. A property system (P-system) is a structure ⟨U, V, f⟩,
where U is a non-empty set whose elements are called objects, V is a set whose elements
are called properties, and f : U → 2V is a mapping called an information function; we
do not require that f(x) ̸= ∅. A statement a ∈ f(u) can be interpreted as “Object u
possesses property a”. If U is finite, then a property system is definitionally equivalent to
a formal dyadic context of Wille [8], by observing that the function f : U → 2V can be
replaced by a relation Rf ⊆ U × V , where u Rf a if and only if a ∈ f(u) which has the
same informational content.1

If we think of a property system as describing possible states of an attribute—such as
“color” or “language spoken”—we extend it by the definition of an aggregate structure:
An attribute system (A-system) [7] is a structure S := ⟨U,Ω, {Va : a ∈ Ω}, f⟩ where

1. U is a non-empty set of objects,
1At this stage of our investigation we suppose that we have a correct description of the world, i.e.

what we observe is true.
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2. Ω is a set of property labels or attributes, and Va is a set of possible values of a ∈ Ω,
3. f : U×Ω→ ⋃

a∈Ω 2Va is a choice function, where f(x, a) ⊆ Va. Equivalently, we may
define f : U → ∏

a∈Ω 2Va .

So, if a ∈ Ω is a property label weight, then Vweight may be a set of rational numbers in
some interval that can serve as numerical expressions of the weight of an object (e.g., in
kilograms or pounds), or any value that makes sense. It could also be some aggregated
value such as “low”, “medium”, “high” etc.
We call ⟨U,Ω, {Va : a ∈ Ω}⟩ the skeleton of S . The product U × ∏

a∈Ω 2Va collects
all possible vectors of value sets that can be associated with some element of U . An
information function now picks one element from ∏

a∈Ω 2Va for each x ∈ U .
An element x ∈ U is called deterministic, if |f(x, a)| ⩽ 1 for all a ∈ Ω or every projection
of the vector attribute to x is either an empty set or a singleton subset of Va. The set of
all deterministic elements of S is denoted by DS . The characterization stems from the
fact that the role of the choice function is to narrow down the possibilities for the values
of a with respect to the object x. If |f(x, a)| = 1, then we know the exact value of the
property a for x, or if |f(x, a)| = ∅, then we know that x does not have this property at
all. This is why we call a system with |f(x, a)| ⩽ 1 deterministic. If |f(x, a)| ⩾ 2 the set
has different possibilities of interpretation, see [3]. If U is finite and U = DS , then S is
called an information system (in the sense of 6).

Operationalizing affordances

A direction on operationalization of affordances was suggested in [2]:

A formalization of affordance relations needs to provide crisp and fuzzy struc-
tures, mechanisms for spatial and temporal change, as well as contextual mod-
eling.

The basic setup of an affordance relation consists of a set U of an agent’s abilities, a set
E of features of the environment, and a binary relation R ⊆ U ×E. Chemero [1, p. 189]
writes

Affordances [. . . ] are relations between the abilities of organisms and fea-
tures of the environment. Affordances, that is, have the structure Affords–φ
(feature,ability).

We expand this notion by regarding an affordance in a first step as a relation φ ⊆ A×O×E
between actors, objects and properties of the environment, where φ(a, o, e) is interpreted
as

Entity o affords action Actφ to the actor (or perceiver, agent) a in the envi-
ronment (context) e.
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The initial notion of an affordance is quite coarse, and all three components require
further description. Therefore, we extend the concept as follows: Suppose that for a set
A of actors, a set O of entities or objects, and a set E of environmental factors we have
deterministic information systems

IA =
〈
A,ΩA, {V A

q : q ∈ ΩA}, fA : A→ ∏
q∈ΩA

V A
q

〉
,

IO =
〈
O,ΩO, {V O

q : q ∈ ΩO}, fO : O → ∏
q∈ΩA

V O
q

〉
,

IE =
〈
E,ΩE, {V A

q : q ∈ ΩE}, fE : E → ∏
q∈ΩA

V E
q

〉
.

Each of these information systems is interpreted as a description, respectively, of actors,
entities, or the environment. We now define an affordance as a relation

φ ⊆ {⟨a, fA(a)⟩ : a ∈ A} × {⟨o, fO(o)⟩ : o ∈ O} × {⟨e, fE(e)⟩ : e ∈ E}.

Thus, an affordance is a ternary relation that holds among actors with properties, objects
with properties, and environments (contexts) with properties. See Figure 1 for a pictorial
interpretation.

Figure 1: The triples of vectors of the same color constitute the affordance φ and its
corresponding action Actφ. We identify, respectively, actors, objects, and environments
that cannot be distinguished by available properties.

Information system for actors

A/∼

ΩA p1 p2 p3 p4 p5 p6

[a1] vp1
a1 vp2

a1 vp3
a2 vp4

a2 vp5
a2 vp6

a2

[a2] vp1
a2 vp2

a2 vp3
a2 vp4

a2 vp5
a2 vp6

a2

[a3] vp1
a3 vp2

a3 vp3
a3 vp4

a3 vp5
a3 vp6

a3

[a4] vp1
a4 vp2

a4 vp3
a4 vp4

a4 vp5
a4 vp6

a4

[a5] vp1
a5 vp2

a5 vp3
a5 vp4

a5 vp5
a5 vp6

a5

[a6] vp1
a6 vp2

a6 vp3
a6 vp4

a6 vp5
a6 vp6

a6

[a7] vp1
a7 vp2

a7 vp3
a7 vp4

a7 vp5
a7 vp6

a7

Information system for entities

O/∼

ΩO q1 q2 q3 q4 q5 q6 q7

[o1] vq1
o1 vq2

o1 vq3
o1 vq4

o1 vq5
o1 vq6

o1 vq7
o1

[o2] vq1
o2 vq2

o2 vq3
o2 vq4

o2 vq5
o2 vq6

o2 vq7
o2

[o3] vq1
o3 vq2

o3 vq3
o3 vq4

o3 vq5
o3 vq6

o3 vq7
o3

[o4] vq1
o4 vq2

o4 vq3
o4 vq4

o4 vq5
o4 vq6

o4 vq7
o4

[o5] vq1
o5 vq2

o5 vq3
o5 vq4

o5 vq5
o5 vq6

o5 vq7
o5

[o6] vq1
o6 vq2

o6 vq3
o6 vq4

o6 vq5
o6 vq6

o6 vq7
o6

[o7] vq1
o7 vq2

o7 vq3
o7 vq4

o7 vq5
o7 vq6

o7 vq7
o7

[o8] vq1
o8 vq2

o8 vq3
o8 vq4

o8 vq5
o8 vq6

o8 vq7
o8

Information system for environments

E/∼

ΩE r1 r2 r3 r4 r5 r6 r7

[e1] vr1
e1 vr2

e1 vr3
e1 vr4

e1 vr5
e1 vr6

e1 vr7
e1

[e2] vr1
e2 vr2

e2 vr3
e2 vr4

e2 vr5
e2 vr6

e2 vr7
e2

[e3] vr1
e3 vr2

e3 vr3
e3 vr4

e3 vr5
e3 vr6

e3 vr7
e3

[e4] vr1
e4 vr2

e4 vr3
e4 vr4

e4 vr5
e4 vr6

e4 vr7
e4

[e5] vr1
e5 vr2

e5 vr3
e5 vr4

e5 vr5
e5 vr6

e5 vr7
e5

[e6] vr1
e6 vr2

e6 vr3
e6 vr4

e6 vr5
e6 vr6

e6 vr7
e6

[e7] vr1
e7 vr2

e7 vr3
e7 vr4

e7 vr5
e7 vr6

e7 vr7
e7

[e8] vr1
e8 vr2

e8 vr3
e8 vr4

e8 vr5
e8 vr6

e8 vr7
e8

[e9] vr1
e9 vr2

e9 vr3
e9 vr4

e9 vr5
e9 vr6

e9 vr7
e9

× ×

φ =

Actions and concepts from affordances

A tuple in an affordance φ is interpreted as “action Actφ is afforded for actor a by entity o
in the context e”. A tuple ⟨IA,IO,IE, φ⟩ is called an affordance structure. For example,
if actors are cleaning robots, objects are charging stations, and environments are interiors
(e.g., offices or apartments), then we may think about, e.g., cyan triples from φ as

charging stations of the type [o2], afford docking of robots of the type [a2] in
interiors of types [e3] and [e7],
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and similarly about triples of the two remaining colors.
Let us suppose that we also have a set of labels to tag affordances. These may be seen
as finite strings of symbols over a finite alphabet Σ (that is, the Kleene closure Σ∗ of Σ).
Let us suppose that Σ is the standard Latin alphabet. Then, we may attribute the label
‘dock’ to the affordance φ and thus obtain an action dockφ of docking. Thus actions are
labeled affordances, more formally, they are elements of the set Σ∗ × Aff, where Aff is a
set of affordances.
There is a similarity between dockφ and the action dockψ of docking a ship in a shipyard.
Clearly, we have different information systems composed of ships as actors, landing piers
as objects, and shipyards as environments. Still further, we can see the similarity to
the action dockζ where the information systems for the affordance ζ concern spaceships
(actors), space stations (objects), and a low-gravity environment. We can now define
concepts as abstractions from all actions of the type dockδ, where δ is an affordance.
Speaking formally, the concept DOCK is a set of all actions of docking

DOCK := {dockφ | φ is an affordance} .

We may say that concepts are abstractions from all those affordances to which we tend
to attribute the same element of Σ∗.
The purpose of this presentation is to give details of our constructions and relate them to
the other well-known formal theories of concepts, for example [8] and [5].

References

[1] Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology,
15(2):181–195.

[2] Düntsch, I., Gediga, G., and Lenarcic, A. (2009). Affordance relations. In Sakai, H.,
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The connection between the algebraic property of amalgamation and the syntactic prop-
erty of interpolation has received considerable attention in the literature in the frameworks
of model theory [1], abstract algebraic logic [2], universal algebra [5], and residuated struc-
tures [4, 6]. Explicitly, if a logic ⊢ is algebraized by a variety V that has the congruence
extension property, then V has the amalgamation property if and only if ⊢ has the de-
ductive interpolation property. This “bridge theorem” provides a powerful technique for
establishing the deductive interpolation property via the amalgamation property, and vice
versa. However, for varieties that lack the congruence extension property, failure of the
amalgamation property does not necessarily imply failure of the deductive interpolation
property. A natural problem is therefore to describe a property that, when combined with
the deductive interpolation property, is equivalent to the amalgamation property. In this
work, we identify such a property and provide an algebraic characterization, offering a
potential pathway to resolving certain open problems in the area.

Amalgamation and interpolation

The term “amalgamation” refers to the process by which two algebras are combined while
preserving a common subalgebra. To express this notion formally, let K be a class of
similar algebras. A doubly injective span in K is a 5-tuple ⟨A,B,C, φB, φC⟩, consisting
of algebras A,B,C ∈ K and embeddings φB : A→ B and φC : A→ C. The class K is
said to have the amalgamation property (for short, AP) if for every doubly injective span
⟨A,B,C, φB, φC⟩ in K , there exist an algebra D ∈ K , and embeddings ψB : B → D
and ψC : C →D such that ψBφB = ψCφC .
The AP for a variety can be characterized in terms of its free algebras, which can be then
reflected in a property of the corresponding equational consequence relation of the variety.
In particular, we may focus on the equational consequence relation for a fixed countably
infinite set of variables X. Formally, the consequence relation ⊨K on the set of equations
Eq(X) (pairs of formulas over X) is defined as follows for Σ ∪ {ε} ⊆ Eq(X):

Σ ⊨V ε :⇐⇒ for any homomorphism h from the formula algebra over X to some A ∈ K ,

Σ ⊆ ker(h) =⇒ ε ∈ ker(h).

Given Σ∪Γ ⊆ Eq(X), we write Σ ⊨V Γ if Σ ⊨V γ for all γ ∈ Γ, and denote by V ar(Γ) the
set of variables occurring in Γ. If V is a variety, then the equational consequence relation
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⊨V is finitary. Moreover, if ⊢ is an algebraizable logic with equivalent algebraic semantics
V , then there are mutually inverse translations between ⊢ and ⊨V .
A variety V has the Robinson property (for short, RP) if for any Σ ∪ Π ∪ {ε} ⊆ Eq(X)
such that V ar(Σ) ∩ V ar(Π) ̸= ∅ and V ar({ε}) ∩ V ar(Π) ⊆ V ar(Σ), whenever

(i) Σ ⊨V δ ⇐⇒ Π ⊨V δ for all δ ∈ Eq(X) with V ar(δ) ⊆ V ar(Σ) ∩ V ar(Π);

(ii) Σ ∪ Π ⊨V ε,

then Σ ⊨V ε.

Theorem 1 (cf. [5, Thm. 13]). A variety has the amalgamation property if and only if
it has the Robinson property.

The RP (and hence the AP) implies the deductive interpolation property, whose algebraic
counterpart is the “generalized amalgamation property with injections”, introduced by
Kihara and Ono in [4]. Formally, a variety V is said to have the deductive interpolation
property (for short, DIP) if for any Σ ∪ {ε} ⊆ Eq(X) such that V ar(Σ) ∩ V ar({ε}) ̸= ∅,
whenever

(i) Σ ⊨V ε,

then there exists ∆ ⊆ Eq(X) with V ar(∆) ⊆ V ar(Σ) ∩ V ar({ε}) such that

(ii) Σ ⊨V ∆;

(iii) ∆ ⊨V ε.

Conversely, the DIP implies the AP in the presence of the congruence extension property.
Recall that a variety V has the congruence extension property (for short, CEP) if for every
D ∈ V , subalgebra C of D, and congruence Θ of C, there exists a congruence Φ of D
such that Θ = Φ ∩ C2.
The syntactic counterpart of the CEP is the extension property (see [6, Sec. 8.2]). A variety
V is said to have the extension property (for short, EP) if for any Σ ∪Π ∪ {ε} ⊆ Eq(X),
whenever

(i) Σ ∪ Π ⊨V ε,

then there exists ∆ ⊆ Eq(X) with V ar(∆) ⊆ V ar(Π ∪ {ε}) such that

(ii) Σ ⊨V ∆;

(iii) ∆ ∪ Π ⊨V ε.

On the syntactic side, the connection between the RP and DIP can be made explicit in
the form of the following theorem, which appeared first in [3].
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Theorem 2 (cf. [5, Thm. 22]). (a) If a variety has the Robinson property, then it has
the deductive interpolation property.

(b) If a variety has the deductive interpolation property and the extension property, then
it has the Robinson property.

The weak Robinson property

Theorem 2 naturally poses the challenge of defining a property weaker than the EP that,
when combined with the DIP, is equivalent to the RP (and hence also the AP). To address
this challenge, we define the weak Robinson property.
We say that a variety V has the weak Robinson property (for short, WRP) if for any
Σ∪Π∪{ε} ⊆ Eq(X) such that V ar(Σ)∩V ar(Π) ̸= ∅ and V ar({ε})∩V ar(Π) ⊆ V ar(Σ),
whenever

(i) Σ ⊨V δ ⇐⇒ Π ⊨V δ for all δ ∈ Eq(X) with V ar(δ) ⊆ V ar(Σ) ∩ V ar(Π);

(ii) Σ ∪ Π ⊨V ε;

(iii) Π ⊨V ρ =⇒ Σ ⊨V ρ for all ρ ∈ Eq(X) with V ar(ρ) ⊆ V ar(Σ),

then Σ ⊨V ε.
This property provides a positive answer to the challenge posed above. By definition, it is
immediate that the RP implies the WRP. Also, it can be shown that the WRP is implied
by the EP, and indeed is strictly weaker than the EP, since, e.g., the variety of groups has
the RP but not the EP. The following theorem states that the conjunction of the WRP
and DIP are in fact equivalent to the RP.

Theorem 3. A variety has the Robinson property if and only if it has the weak Robinson
property and the deductive interpolation property.

This theorem implies that there are varieties that lack the WRP but still satisfy the
DIP—as observed in [7], the variety of semigroups has the DIP despite failing the AP.
In parallel to the connection between the EP and CEP, there exists an algebraic counter-
part of the WRP. We say that a variety V has the weak congruence extension property
(for short, WCEP) if for any algebra D ∈ V with subalgebras A,B,C ∈ V such that A
is a common subalgebra of B and C, and D with the inclusion maps B ↪→ D, C ↪→ D
is the pushout of the inclusion maps A ↪→ B, A ↪→ C, the following holds: for every
congruence Θ of C such that Θ ∩ A2 is the least congruence ∆A of A, there exists a
congruence Φ of D such that Θ = Φ ∩ C2.
A categorical approach provides a natural way to characterize properties such as the CEP
using diagrams (see, e.g., [1]). Similarly, we can give a categorical description of the
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WRP. We say that a variety V has the weak extension property (for short, WEP) if for
each commuting diagram in V of the form

B

A C D

C ′

ψBφB

φC

φC′

ψC

π

where φC′ is injective, π is surjective and D with the embeddings ψB : B → D and
ψC : C →D is the pushout of the doubly injective span ⟨A, φB, φC⟩, there exist a surjec-
tive homomorphism α : D →D′ and an embedding β : C ′ →D′, such that the following
diagram commutes:

B

A C D

C ′ D′

ψBφB

φC

φC′

ψC

π α

β

Theorem 4. Let V be a variety. Then the following are equivalent:

(1) V has the weak Robinson property.

(2) V has the weak congruence extension property.

(3) V has the weak extension property.

Concluding remarks

Despite the progress made, there remain several intriguing gaps in our understanding.
Crucially, we do not yet have any example of a variety that has the WRP but lacks the
AP and CEP. Even if these properties are distinct in the setting of universal algebra, it
would be interesting to identify families of varieties that have or do not have the WRP as
a method either for refuting the RP or for showing that it is equivalent to the DIP. For
example, it is known that the variety of lattice-ordered groups does not have the RP, but
the question of whether it has the DIP is open; by showing that this variety has the WRP,
the question would be answered negatively.
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In this talk, we will consider extensions of pointed abelian logic determined by subqua-
sivarieties of a class of pointed Abelian ℓ-groups. In particular, we will focus on those
quasivarieties which are generated by chains.
Łukasiewicz logic in its infinitely-valued version was introduced by Łukasiewicz and Tarski
[30] in 1930 and since then it was proved to be one of the most prominent non-classical
logics. This logic is by itself a member of the family of many-valued logics often used
to model some aspects of vagueness. Also, it has deep connections with other areas of
mathematics such as continuous model theory, error-correcting codes, geometry, algebraic
probability theory, etc. [4, 13, 24, 27].
Abelian logic is a well-known (finitary) contraclassical paraconsistent logic. This logic
was independently introduced by Meyer and Slaney [26] and by Casari [3] and it is also
called the logic of Abelian ℓ-groups [2] or Abelian Group Logic [28]. This terminology
follows from the fact that the matrix models of Abelian logic consist of Abelian ℓ-groups
and their positive cones as filters of designated elements (there is also a version of Abelian
logic in which the only designated element is the neutral element of the group, which will
not be considered here).
Pointed Abelian logic is expansion of Abelian logic, where we add a new constant symbol
f to the language, but do not add any axioms. This new constant greatly improves
the expressive power of our logic. In particular, this logic contains several important
extensions, the most important of which was Łukasiewicz unbound logic (see[6]).
The varieties of MV-algebras, classified by Komori in [23], correspond to varieties of
positively (f ⩾ 0) pointed abelian ℓ-groups, as shown by Young in [29] via the Mundici
functor (for the definition of the Mundici functor, see [4]). We will generalize this to
classification of all pointed ℓ-groups.
The whole variety of pointed Abelian ℓ-groups is generated by {R−1,R1} and {Q−1,Q1},
respectively. The subvarieties of HSP(R1) are determined by algebras Zn and Zn ⋉ Z0
for n,> 0 and subvarieties of HSP(R−1) are determined by algebras Zn and Zn ⋉ Z0 for
n,< 0. This can be generalized to the description of all subvarieties of pointed Abelian
ℓ-groups.
Our next goal is to generalize this classification to all quasivarieties generated by chains.
The motivation for this approach is that these quasivarieties correspond to semilinear
extensions of pointed abelian logic. In [15] Gispert described all semilinear finite exten-
sions of Łukasiewicz logic by describing all universal classes of MV-chains, thus (using [8])
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giving a classification of all quasi-varieties of MV-algebras generated by chains. We show
that this classification can also be applied to pointed ℓ-groups by proving the following
lemma.

Lemma 1. Let A be an Abelian ℓ-group a let B be a convex subgroup of A, and let be
b ∈ B a strong unit in B. Then ISPPU(Ab) = ISPPU(Bb).

In other words, this lemma tells us that we can restrict ourselves to groups with a strong
unit. These are known to be equivalent to MV-algebras via the Mundici functor. There-
fore, we can describe all quasivarieties of pointed Abelian ℓ-groups generated by chains
as it is stated in the following theorem.

Theorem 1. Let S denote any finitely generated dense ℓ-subgroup of R such that S∩Q =
Z. Every subquasivariety of pAb generated by chains is equal to

ISPPU({Zn | n ∈ A} ∪ {Zn ⋉ Zm | n ∈ B,m ∈ γ(n) ∪ {Sd | d ∈ C}}),

for some A,B,C ⊆ Z, and γ : n 7→ γ(n) ⊆ div(n), where div(n) stands for the set of all
divisors of n ∈ Z.

Although the above result can be derived quite easily from [15] using our Lemma 1 and
the Mundici functor, we try to prove these results without using theory of MV-algebras.
We believe that this will lead to a significant simplification of the proofs used. In the last
section we give an axiomatization of these quasivarieties.
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Introduction

Amalgamation is explored in this talk within classes of involutive commutative residu-
ated lattices that are non-divisible, non-integral, and non-idempotent. Several classes of
algebras significant to us are designated by a distinctive notation:

Ac the class of abelian o-groups
I the class of involutive FLe-algebras
S the class of odd or even idempotent-symmetric involutive FLe-algebras

Adjunct to I,

• the superscript c means restriction to totally-ordered algebras,

• the superscript sl means restriction to semilinear algebras,

• the subscript o means restriction to odd algebras,

• the subscript e means restriction to even algebras,

• the subscript ei means restriction to even algebras having an idempotent falsum
constant,

• the subscript en means restriction to even algebras having a non-idempotent falsum
constant,

When multiple letters appear in the subscript, they denote the union of the corresponding
classes. For instance Sc

oei
refers to the class of idempotent-symmetric involutive FLe-chains

which are either odd or even with an idempotent falsum constant.

First we delve into the Amalgamation Property within subclasses of Ic
oe. We show that

several subclasses of these structures fail to satisfy the Amalgamation Property (Theo-
rem 1), including the classes of odd and even ones. This failure stems from the same
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underlying reason as in the case of discrete linearly ordered abelian groups with positive
normal homomorphisms [3]. Conversely, it is proven that three subclasses of them ex-
clusively comprising algebras that are idempotent-symmetric possess the Amalgamation
Property (Theorem 2), albeit fail the Strong Amalgamation Property (Theorem 3). The
failure of the Strong Amalgamation Property in these subclasses can be attributed to
the same underlying reason observed in the class of linearly ordered abelian groups with
positive homomorphisms [1].

Then we shift our focus from these classes of chains to the semilinear varieties of FLe-
algebras that they generate. Our goal is to transfer the Amalgamation Property, or
its failure, from the specific classes of chains to the generated varieties. We conclude
that every variety of semilinear involutive commutative (pointed) residuated lattices that
includes the variety of odd semilinear commutative residuated lattices fails the Amal-
gamation Property (Theorem 4). This result strengthens a recent proof by W. Fussner
and S. Santschi, which established that the variety of semilinear involutive commuta-
tive residuated lattices lacks the Amalgamation Property [2, Theorem 5.2]. Furthermore,
we demonstrate that the varieties of idempotent-symmetric, semilinear, odd involutive
residuated lattices, as well as idempotent-symmetric, semilinear, odd or even involutive
residuated lattices, exhibit the Transferable Injections Property (Theorem 5), a strength-
ening of the Amalgamation Property.

Amalgamation in classes of Icoe

Theorem 1. The classes Ic
e, Ic

ei
, Ic

en, along with every class of involutive FLe-chains
which contains Ic

o, fail the Amalgamation Property.

Theorem 2. The classes Sc
o, Sc

e, and Sc
oe each satisfy the Amalgamation Property.

Theorem 3. The classes Sc
o, Sc

e, and Sc
oe do not satisfy the Strong Amalgamation Prop-

erty.

Amalgamation in the generated semilinear varieties

Theorem 4. Every variety of semilinear involutive commutative (pointed) residuated lat-
tices that includes the variety of odd semilinear commutative residuated lattices fails the
Amalgamation Property.

Theorem 5. The varieties Ssl
o and V (Sc

e) have the Transferable Injections Property.
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Techniques

The core principle of our approach relies on leveraging the intrinsic layer group decompo-
sition of the algebras in Ic

oe [4] and an associated categorical equivalence [5]. This strategic
direct system decomposition facilitates the independent execution of amalgamation within
each distinct layer. Subsequently, these layer-wise amalgams are leveraged to construct
the overall amalgam of the algebras via the functor detailed in [5] (see Fig. 1).
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Figure 1: Brief visual illustration of the main constructions: “Layerwise” amalgamation
in Ac (right), and the corresponding amalgamation in Sc

oe (left).

As an example, proving Theorem 6 was necessary to convert the cyan direct system into
the brown one. Additionally, several techniques for embedding direct systems into those
over larger index sets were developed to construct the embeddings shown in Fig. 1.

Theorem 6. For any direct system ⟨Lu, ςu→v⟩κ of torsion-free partially ordered abelian
groups over an arbitrary chain κ, there exists a direct system ⟨Ĝu, ςu→v⟩κ of abelian o-
groups. In this system the abelian group reducts of the Lu’s and the transitions remain
unchanged, while, for every u ∈ κ, the ordering relation of Ĝu is an extension of the
ordering relation of Lu.
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Let K be a class of algebras.

Definition 1. An n-ary partial function on K is a tuple ⟨fA : A ∈ K⟩, where each fA is
a function fA : X → A for some X ⊆ An. The set X is then called the domain of fA and
denoted with dom(fA).

We are interested in particular partial functions that exhibit a behaviour similar to that
of term functions.

Definition 2. Let f = ⟨fA : A ∈ K⟩ be a partial function on K. Then f is pre-
served by homomorphisms when for every homomorphism h : A→ B with A,B ∈ K and
⟨a1, . . . , an⟩ ∈ dom(fA) we have ⟨h(a1), . . . , h(an)⟩ ∈ dom(fB) and

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

Definition 3. A first-order formula φ in the language of K is said to be functional in
K when for every A ∈ K and a1, . . . , an ∈ A there exists at most one b ∈ A such that
A ⊨ φ(a1, . . . , an, b).

A functional formula φ induces an n-ary partial function φA on each A ∈ K with domain

dom(φA) = {⟨a1, . . . , an⟩ ∈ An : there exists b ∈ A such that A ⊨ φ(a1, . . . , an, b)}

defined for every ⟨a1, . . . , an⟩ ∈ dom(φA) as φA(a1, . . . , an) = b, where b is the unique
element of A such that A ⊨ φ(a1, . . . , an, b).

Definition 4. A partial function f = ⟨fA : A ∈ K⟩ on K is called implicit if there exists
a functional formula φ such that fA = φA for each A ∈ K. In this case we say that φ
defines f .

Definition 5. An implicit operation of K is an implicit partial function of K that, more-
over, is preserved by homomorphisms.
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Example 1. Let DL be the variety of bounded distributive lattices and φ the formula

(x ∧ y ≈ 0) & (x ∨ y ≈ 1).

If A ∈ DL, then A ⊨ φ(a, b) if and only if b is a complement of a in A. Since complements
in bounded distributive lattices are unique when they exist and are preserved by bounded
lattice homomorphisms, we conclude that φ defines an implicit operation of DL.

It is well known that the formulas preserved by homomorphisms are precisely the ex-
istential positive formulas; that is, the formulas built from equations and ⊥ using only
existential quantifiers, conjunctions, and disjunctions. As a consequence, we obtain the
following characterization of implicit operations.

Proposition 1. Let K be an elementary class and f a partial function on K. Then f is
an implicit operation if and only if it is defined by an existential positive formula.

Definition 6. An n-ary implicit operation f is said to be interpolated in K by a set T
of n-ary terms in the language of K when for every A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fA)
there exists t ∈ T such that

fA(a1, . . . , an) = tA(a1, . . . , an).

Intuitively, the implicit operation f is made explicit by the terms in T .

Example 2. Every term-function is clearly an implicit operation that is interpolated
by a single term. However, not all implicit operations can be interpolated by terms.
For instance, there is no set of terms in the language of bounded distributive lattices
interpolating the operation of taking complements in DL.

Definition 7. A class of algebras is said to have the strong Beth definability property
when each of its implicit operations can be interpolated by a set of terms.

The name “strong Beth definability property” is motivated by the resemblance to the
Beth definability property in logic. When a finitary logic is algebraized by a quasivariety
K, the former has the Beth definability property iff all epimorphisms in K are surjective
[1, Thm. 3.12] (see also [2]). For quasivarities the strong Beth definability property
can be conveniently phrased in the following equivalent form, where we recall that a
primitive positive formula (pp formula, for short) is a conjunction of equations prenexed
by existential quantifiers.

Proposition 2. A quasivariety has the strong Beth definability property if and only if
each of its implicit operations defined by pp formulas can be interpolated by a single term.

The strong Beth definability property corresponds to a condition stronger than the sur-
jectivity of epimorphisms (see [3, 4] for this correspondence in the case of modal and
intuitionistic logic), which is defined as follows:
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Definition 8. A class of algebras K has the strong epimorphism surjectivity property
(SES property, for short) when for every homomorphism f : A → B with A,B ∈ K and
b ∈ B − f [A] there exists a pair of homomorphisms g, h : B → C with C ∈ K such that
g ◦ f = h ◦ f and g(b) ̸= h(b).

Theorem 1. A universal class has the SES property iff it has the strong Beth definability
property.

When K is a quasivariety, the SES property can be formulated in purely categorical terms:
K has the SES property iff all monomorphisms in K are regular.
Our main contribution is a method to optimally expand a given class of algebras into one
where all implicit operations can be made explicit. The guiding example is the variety of
Boolean algebras, which can be obtained by adding the operation of taking complements
to the variety of bounded distributive lattices.
Let F be a set of implicit operations of K. We denote by LF the language obtained by
expanding the language of K with function symbols acting as names for the operations in
F . Whenever A ∈ K has the property that fA is a total function for each f ∈ F , we
can expand A to an algebra A[LF ] in the language LF by interpreting the new function
symbols with the respective implicit operations in F . We can then consider the collection
of such expansions:

K[LF ] := {A[LF ] : A ∈ K and fA is total for each f ∈ F}.

Definition 9. An implicit operation f of K is said to be extendable in K if every A ∈ K
can be embedded into some B ∈ K such that fB is a total function.

Definition 10. A pp expansion M of K is the class of subalgebras of K[LF ] for some set
F of extendable implicit operations of K that are defined by pp formulas. If moreover M
has the strong Beth definability property, we call it a Beth companion of K.

Example 3.

(i) The variety of Boolean algebras is a Beth companion of the variety of bounded
distributive lattices.

(ii) The variety of implicative semilattices is a Beth companion of the variety of Hilbert
algebras.

(iii) The variety of Heyting algebras of depth at most 2 is a Beth companion of the
variety of pseudocomplemented distributive lattices.

(iv) The variety of Abelian groups is a Beth companion of the quasivariety of cancellative
commutative monoids.

But not every class of algebras has a Beth companion.

Example 4.

131



The Logic Algebra and Truth Degrees (LATD) 2025

(i) The variety of (commutative) monoids does not admit a Beth companion.

(ii) Infinitely many varieties of Heyting algebras do not admit a Beth companion. In
particular, for every n ⩾ 5 the variety generated by the n-element Heyting chain
lacks a Beth companion.

As a main result, we obtain that Beth companions have the following desirable properties:

Theorem 2.

(i) A Beth companion of a quasivariety is a quasivariety.

(ii) All the Beth companions of a quasivariety are term-equivalent.
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Probability theory and fuzzy logic are both theories used when one aims at performing
some sort of inference in uncertain or imprecise situations. These two theories have
been combined in many different ways and for this talk we recall [1], where the authors
define the algebraic counterpart of a random variable within a conservative expansion of
Łukasiewicz logic. The probabilistic setting used there is the one of subjective probability,
as introduced by Bruno de Finetti. Another point of view on probability theory is the
so-called frequentist approach. In this case, the probability of an event is defined by the
frequency of that event based on previous observations. In this setting, it is common to
define a statistical model that fits the observed data, and to derive the properties of the
hidden probability distribution in this way. Perhaps surprisingly, subjective probability is
related to frequentist probability via de Finetti’s work, and in particular via the notion of
exchangeability that, loosely speaking, shows how statistical models appear in a Bayesian
framework, and how probabilities can come from statistics.
In this talk, we mainly discuss the state of the art on the search for a good notion of
exchangeability and statistical models in non-classical logic, staring with the results of
[6]. In particular, we discuss the notion of exchangeability in the setting of Łukasiewicz
logic, give a version of the celebrated de Finetti’s theorem in algebraic logic, and present
the definition and some results on statistical models that are new to the LATD audience.

Classically, exchangeability is defined as follows. Let T be a non-empty set with a σ-
algebra of subsets X and let X be the smallest σ-algebra on T ω that contains all sets of
type C(Ei1 , . . . , Eik) = ∏

nEn with En = T for n /∈ {i1, . . . , ik}. A generic measure σ on
X is called exchangeable if for any permutation π of {i1, . . . , ik},

σ (C(Ei1 , . . . , Eik)) = σ
(
C(Eπ(i1), . . . , Eπ(ik))

)
.

For any measure µ on X , let µ denote the unique product measure defined on X using
µ. A generic measure σ on X is called presentable if there exists a measure ν on the set
P of all probability measure on X such that for any A ∈X ,

σ(A) =
∫
P
µ(A)dν(µ).

Then, de Finetti’s theorem (in the version of Hewitt and Savage [5]) gives sufficient con-
ditions for the two notions to coincide.
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To give a non-classical version of this result, the algebraic framework used will be the one
of MV-algebras. This is mainly due to the fact that an algebraic theory of probability
is encoded in MV-algebras by the notion of states. Via a suitable version of the Riesz
representation theorem, the so-called Kroupa-Panti theorem, states of MV-algebras are
in one-one correspondence with probability measures on a σ-algebra that depends on A.
In particular, we will work with a subclass of the infinitary variety RMVσ of σ-complete
Riesz MV-algebras, that is, MV-algebras closed to multiplication by elements of [0, 1] and
to countable suprema, see [4]. The subclass needed is the pre-variety generated by [0, 1].
Algebras in ISP ([0, 1]) are called σ-semisimple and they can be characterized as follows,
when they are countably generated.
For a countable cardinal κ, Borel([0, 1]κ) denotes the MV-algebra of [0, 1]-valued and
Borel-measurable functions over the domain [0, 1]κ. Such algebra is proved to be the free
κ-generated algebra in RMVσ in [2]. If needed, when X is a countable set of generators,
we will write Borel(X) instead of Borel([0, 1]|X|). For a topological space T , BO(T ) denotes
the σ-algebra of its Borel subsets, that is, the σ-algebra generated by open subsets of T .
Now, with a characterization proved in [2], a (at most) countably generated algebra A is
σ-semisimple iff there exist sets κ ≤ ω and V , with V being an arbitrary intersection of
Borel subsets of [0, 1]κ, such that A ≃ Borel([0, 1]κ)|V , the algebra of restrictions to V of
elements of Borel([0, 1]κ).
In this setting, we define an appropriate counterpart of a product measure. To do so,
thinking of states as an algebraic dual of probability measures, we will first give a char-
acterization for the coproduct of objects in RMVσ.

Proposition 1. Let {An}n∈N be a sequence of σ-semisimple algebras in RMVσ. For any
n ∈ N, let An ≃ Borel(Xn)|Vn, where we assume the sets Xn to be countable and pairwise
disjoint and we assume each Vn to be a Baire subset of [0, 1]Xn. Then the free product⊕

nAn exists in RMVσ and
⊕
n

An = Borel
(⋃
n

Xn

)
|V with V =

∏
n∈N

Vn.

Using this characterization of coproduct, we will define the notion of presentable state and
exchangeable state, and prove that they coincide on any Borel([0, 1]κ), when κ is countable.

Definition 1. Let A ∈ RMVσ countably generated, A ≃ Borel([0, 1]κ)|V . Take the co-
product ⊕ω A of A with itself countably many times. A σ-state s : ⊕ω A → [0, 1] is
called weakly exchangeable if the associate measure (in the sense sketched above, by the
Kroupa-Panti theorem), on the product of countable copies of (V,BO(V )), is exchange-
able in the classical sense. Similarly, the σ-state s is called weakly presentable if the
associated measure is presentable in the classical sense.

Theorem 1 (Weak de Finetti’s exchangeability). Let κ be a countable cardinal. A state
on Borel([0, 1]κ) is weakly exchangeable if, and only if, it is weakly presentable.

In the second part of the talk we present a logico-algebraic take on the notion of a statistical
model introduced in [6] and further discussed in [3].
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Formally, for κ ≤ ω, a logico-algebraic statistical model is a function η = (ηi)i∈κ : P → ∆κ,
where P ⊆ [0, 1]d is an intersection of Borel measurable sets and ∆κ is the standard κ-
dimensional simplex. When κ = ω, we take ∆ω to be {x ∈ [0, 1]ω | ∑∞

i=1 xi ≤ 1}, which is
known to be closed (and convex) and therefore it is a Borel subset of [0, 1]ω. The intuition
behind this definition is the following:

• [0, 1]κ is the set of observations on the real world and Borel([0, 1]κ) is the algebra of
many-valued events;

• the set P ⊆ [0, 1]d is the set of states of the world, or parameters, we allow d to be
any countable cardinal;

• the tuple of functions η := (ηi)i∈κ : P → [0, 1]κ is our statistical model: to each
parameter x ∈ P it associates the tuple (ηi(x))i∈κ. Each ηi : [0, 1]d → [0, 1] is a
Borel measurable function.

We call κ-dimensional any statistical model whose codomain is ∆κ.
We will show how κ-dimensional statistical models can be interpreted in the category of
σ-complete Riesz MV-algebras and how they can be seen as a suitable pre-sheaf, whose
domain is a category of parameters.
Lastly, if time permits, we present a (work in progress) approach to exchangeability for
states that does not require the Kroupa-Panti theorem and it is related to the more general
framework of subjective decision theory.
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The main aim of this paper is to show that the topics of Łukasiewicz logic, semirings and
tropical structures fruitfully meet, by combining the ideas of [1], [6], [15] and [4]. This
gives rise to a topos theoretic perspective to Łukasiewicz logic, see [2]. Our aim seems to
be completely in line with the spirit of the following remark from [12]:

"The confluence of geometric, combinatorial and
logical-algebraic techniques on a common problem
is one of the manifestations of the unity of mathematics."

Tropicalization, originally, is a method aimed at simplifying algebraic geometry and it is
used in many applications. It can be seen as a part of idempotent algebraic geometry.
Tropical geometry produces objects which are combinatorially similar to algebraic vari-
eties, but piecewise linear. That is, tropicalization attaches a polyhedral complex to an
algebraic variety, obtaining a kind of algebraic geometry over idempotent semifields.
Originally the idea was focused on complex algebraic geometry and started from a field
(or ring) K and its polynomials, an idempotent semiring (S,∧,+, 0, 1) and a valuation
v : K → S. A semiring is an abelian monoid (A,+, 0) with a multiplicative monoid
structure (A, ·, 1) satisfying the distributive laws and such that a · 0 = 0 · a = 0 for all
a ∈ A. A semiring is idempotent if + is idempotent.
Usually S = G ∪ {∞} where G is a totally ordered abelian group and ∞ is an infinite
extra element, but we suggest to be more liberally inspired by [15]: first, G can be any
lattice ordered abelian group, and S = G∪ {∞} is a semifield (the Rump semifield of G)
. Moreover, we point out that the passage from G to S and conversely is functorial, even
an equivalence. So we propose here a functorial tropicalization.
A polynomial p with coefficients in K is replaced by a polynomial Trop(p) with coefficients
in S. In the tropicalization Trop(p) of p, the polynomial product of K becomes + in S,
the polynomial sum in K becomes the infimum in S. The constants k ∈ K become their
value v(k). The idea is that the tropicalized polynomial Trop(p) should be simpler than
p but retain the combinatorial structure of p.
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In this paper we intend to contribute to what we mean by tropical mathematics, which
for us, in a very broad sense, is the use of idempotent semirings in mathematics.
The most used semiring in tropicalization is the tropical semiring

Rmaxplus = (R ∪ {−∞},max,+,−∞, 0)

(or its dual with min instead of max). It is used in many contexts, from alge-
braic geometry to optimization to phylogenesis. An application to differential equa-
tions is given in [8]. The variety generated by Rmaxplus includes the semiring reduct
of [0, 1], but not the other way round. Instead, if we consider the negative cone of
the reals, Rneg = (R⩽0 ∪ {−∞},max,+,−∞, 0), we have that the varieties generated
by [0, 1] and Rneg are the same. Another famous semiring is the tropical semiring
Ntrop = (N ∪ {+∞},min,+,+∞, 0). Once again, the varieties generated by Ntrop and
[0, 1] are the same. However, Ntrop and [0, 1] have different first order theories. Thus,
looking at these two varieties from a logical point of view, some differences emerge. This
justifies approaching tropical algebraic structures from a logical point of view.
One can try to apply the same tropicalization idea to more general frameworks, like
universal algebraic geometry by Plotkin [13]. This paper proposes a possible generalization
of tropicalization of algebraic structures using many valued logic and especially fuzzy logic.
In fact, the algebraic structures of fuzzy Łukasiewicz logic (MV-algebras) have a natural
structure of idempotent semiring. Note that MV-semirings are mentioned in [7] in the
context of weighted logics.
Łukasiewicz logic is a fuzzy logic, that is a logic where the set of values is the real interval
[0, 1], rather than the case {0, 1} of classical logic. The connectives of Łukasiewicz logic
are x⊕ y = min(x + y, 1) (replacing OR) and ¬x = 1− x (replacing NOT). Then AND
gets replaced by x⊙y = max(0, x+y−1) (the Łukasiewicz product). We have the tertium
non datur, x⊕ ¬x = 1, the non contradiction law x⊙ ¬x = 0, but not the idempotency:
x ⊕ x ̸= x. Despite the lack of idempotency, MV-algebras are deeply connected with
idempotent structures.
Łukasiewicz logic can be axiomatized as follows, where x→ y means ¬x⊕ y:

1. x→ (y → x)

2. (x→ y)→ ((y → z)→ (x→ z))

3. ((x→ y)→ y))→ ((y → x)→ x)

4. (¬x→ ¬y)→ (y → x).

The only rule is modus ponens: from x→ y and x derive y.
Like the semantic counterpart of classical logic is given by Boolean algebras, the semantic
counterpart of Łukasiewicz logic is given by MV-algebras. These are algebraic struc-
tures generalizing Boolean algebras and widely used in many applications, from quantum
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mechanics to games to functional analysis. The interplay between semirings and MV-
algebras is very interesting. Every MV-algebra is in a natural way (better, in two natural
dual ways) a semiring, as explained in [5], [4].
Namely, MV-algebras are structures (A,⊕, 0, 1,¬) where (A,⊕, 0) is a commutative
monoid, ¬0 = 1, x⊕ 1 = 1, ¬¬x = x and ¬(¬x⊕ y)⊕ y) = ¬(¬y ⊕ x)⊕ x).
MV-algebras are also lattices under the ordering x ⩽ y such that there is z with y = x⊕z.
We let also x⊙ y = ¬(¬x⊕ ¬y) and x⊖ y = x⊙ ¬y = ¬(¬x⊕ y).
The main example of MV-algebra is [0, 1] with x⊕ y = min(x+ y, 1) and ¬x = 1−x. By
[3] it follows that [0, 1] generates the variety of MV-algebras.
The semiring reducts of an MV-algebra A are (A, 0, 1,∧,⊕) and (A, 0, 1, ∨, ⊙). They are
isomorphic semirings and an isomorphism is given by the negation (see [4]).
In order to define other interesting MV-algebras it is convienient to introduce Mundici
functor Γ, see [9]. Γ is a functorial equivalence between MV-algebras and Abelian ℓ-groups
with strong unit. This equivalence was originally used in order to clarify the relations
between AF C∗-algebras and their K0 group. Γ(G, u) is the interval [0, u] of G where
x⊕ y = (x+ y) ∧ u and ¬x = u− x.

Another important example is the Chang MV-algebra C = Γ(Z
lex
× Z, (1, 0)) where

lex
×

denotes lexicographic product of groups. We call V (C) the variety generated by C and
V (C)-algebras the elements of V (C). The algebra C has a very special role in MV-algebras
theory. Γ−1(C) is the K0 of Behncke-Leptin C∗-algebra A0,1, see [10].
An equivalence related to Γ is the one called ∆ between abelian ℓ-groups and perfect
MV-algebras, see ([6]), that is, MV-algebras generated by their infinitesimals. Namely, if
G is an abelian ℓ-group, then ∆(G) = Γ(Z

lex
× G, (1, 0)). So, C can also be defined as

∆(Z).
We can think of the logic of perfect MV-algebras as the logic of the quasi true or quasi
false.
We focus on algebraic models of an equational extension of Łukasiewicz logic. Actually
we consider the extension of Łukasiewicz logic given by the equation in the section 3.1.
It is often stressed that enriched valuations represent "perturbations" of valuations of
classical models. In our case we can speak of "infinitesimal perturbation" of classical
propositional logic, that in turn, means infinitesimal perturbation of Boolean algebras.
Although it seems rather exotic to consider infinitesimally perturbed Boolean algebras as
models of a propositional logic [11], it happens that these models can have an elegant
algebraic characterization. Indeed, we can see that, albeit by means of a categorical
equivalence, such models can be described by a Stone space and a family of lattice ordered
abelian groups. Actually we will consider weak boolean products of lattice ordered abelian
groups. It will be quite interesting that such a logic may have theories interpreted into
points of the presheaf topos over the multiplicative monoid of integers.
As future work, we note that we propose a tropicalization functor that should be compared
with [2] and [14]. In [2], theorem 2.1, the authors relate subgroups of the rationals to the
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points of a natural topos, and in this paper we transfer this correspondence into a result
on a category of countable, perfect, linearly ordered MV algebras, via the functor ∆. It
should be possible to extend this result to more general categories of MV algebras, using
other topoi. In [14] in particular the problem of negation is addressed, which is an issue
also for us, since the functor θ gives structures which do not have a natural involutive
negation
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Algebraization of logic has been widely studied by logicians ever since G. Boole discovered
the connection between classical propositional logic and two-element Boolean-type alge-
bras. Afterwards, A. Mostowski, A. Tarski, and P. Halmos developed the lattice-based [8],
cylindric [4], and polyadic [9] algebraization of classical quantified logic, respectively. To
further generalize these ideas, researchers have explored the algebraization of nonclassical
quantified logics, leading to the development of structures such as polyadic MV-algebras
[5], polyadic BL-algebras [6], polyadic Rasiowa-implicative algebras [2] and cylindric Heyt-
ing algebras [10].
Following this line of research, we first define polyadic algebras over algebraically-
implicative logics [1]. After constructing functional polyadic algebras, we prove the func-
tional representation theorem, which encompasses many known results for non-classical
polyadic algebras.
Let’s first fix some notations. Give two sets I, J with J ⊆ I. We call a mapping σ : I → I
a transformation of I and denote the identity transformation by ι. For σ, τ ∈ II , σJτ
means that σ(i) = τ(i) for all i ∈ J . That is, σ and τ agrees on J . Also, we denote
σ(I \ J)τ as σJ∗τ , i.e. σ and τ agree on the complement of I. If σJ∗ι, we say J supports
σ.
Let L∀∃ = ⟨O,∀,∃,P,F, V ar, ρ⟩ be a first-order language where {→} ⊆ O is a set of
propositional connectives, P(F) is a set of relation (functional) symbols, V ar is a set of
variables, and ρ : O → ω is an arity function.
Similar to classical polyadic algebra developed by Halmos in [9], we first define polyadic
⟨L∀∃, I⟩- algebra A is as

⟨A, (◦A : ◦ ∈ O),∀A,∃A, SA⟩

where ◦A : An → A if ρ(◦) = n, ∀A,∃A : Pω(I)→ AA, and SA : II → AA such that the
following axioms are satisfied :

• SA
ι x = x;

• SA
σ (SA

τ x) = SA
στx, for all σ, τ ∈ II ;

• SA
σ (◦A(x1, . . . , xρ(◦))) = ◦A(SA

σ x1, . . . , S
A
σ xn), for all ◦ ∈ O, σ ∈ II ;

• SA
σ Q

A
J x = SA

τ Q
A
J x for all Q ∈ {∀,∃}, J ⊆ω I, and σ, τ ∈ II such that σJ∗τ ;
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• QA
J S

A
σ x = SA

σ Q
A
σ−1(J)x for all Q ∈ {∀,∃}, J ⊆ω I, and σ, τ ∈ II such that σ is

injective on σ−1(J).

We then denote L as algebraically-implicative predicate logic with the language L∀∃ as
in [1]. By lemma 2.9.11 in [1], A is an algebra of truth values for L, or an L-algebra, if
there is a set of equations E such that the following quasi-equations hold in A for each
α ≈ β ∈ E :

• α(φ) ≈ β(φ), for each axiom φ of L

• ∧
E [Γ]⇒ α(φ) ≈ β(φ) for each rule Γ ⊢L φ of L

• ∧
E [x↔ y]⇒ x ≈ y

Then we define that a polyadic ⟨L∀∃, I⟩-algebra A is called a polyadic L-algebra if it
satisfies the following equations and quasi-equations :

• Axioms of L-algebras;

• Axioms (T1)-(T8) for all σ ∈ II and J ⊆ω I as in [2].

On the other hands, following the definition in [2], we say a value L∀∃-algebra V is an
algebra of the form

⟨V, (◦V : ◦ ∈ O),∀V, ∃V⟩
where ◦V : V ρ(◦) → V is a ρ(◦)-ary operation on V for each ◦ ∈ O, and QV : P(V ) ⇀ V
is a partial unary second-order operation with domain on power set P(V ) of V for each
Q ∈ {∀, ∃}.
Therefore, given a value L∀∃-algebra V and two sets X, I. A functional polyadic ⟨L , I⟩-
algebra V̄ is of the form

⟨V XI

, (◦V̄ : ◦ ∈ O),∀V̄, ∃V̄, SV̄⟩
where ◦V̄ : (V XI )ρ(◦) → V XI , ∀V̄,∃V̄ : Pω(I) → [V XI

, V XI ], and SV̄ : II → End(V) are
defined as follows :

• (◦V̄(p1, . . . , pρ(◦)))(
→
x) = ◦V(p1(

→
x), . . . , pρ(◦)(

→
x)) for all p1, . . . , pρ(◦) ∈ V XI and →

x ∈
XI ;

• (∀V̄
J p)(

→
x) = ∀V

(
{p(→

y ) : →
xJ∗

→
y}
)
,

for all p ∈ V XI , J ⊆ω I, and →
x,

→
y ∈ XI ; similarly for ∃V̄.

• (SV̄
σ p)(

→
x) = p(σ∗

→
x), where (σ∗

→
x)i = (→

x)σ(i)

for all σ ∈ II and →
x ∈ XI .

Note that we use [V XI
, V XI ] to denote that ∀V̄

J p and ∃V̄
J are total functions from XI to

V. If ⟨V, (◦V : ◦ ∈ O)⟩ ∈ ALG∗(L), the algebra of reduced models of L, and ∀V and ∃V

are respectively the generalized meet and join operations, then we say V̄ is a functional
polyadic L-algebra. We can prove a similar theorem as in [9] :
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Theorem 1. Every functional polyadic L-algebra is a polyadic L-algebra.

To see the connection with algebraically-implicative predicate logic, let M be a reduced
model for L and PM is the interpretation of predicate symbols P ∈ P in M. We can show
the following lemma.

Lemma 1. Let F (M) be a subalgebra of Ā (with X = M and I = V ar) generated by
{PM | P ∈ P}. Then F (M) is a functional polyadic ⟨L∀∃, V ar⟩-algebra.

To prove the converse case, it’s similar to the classical case that we need to impose some
further constrain on the polyadic algebras. We say an element a of a polyadic ⟨L∀∃, I⟩-
algebra has a finite support J ⊆ I if Sσa = Sτa for all σ, τ ∈ II such that σJτ . A polyadic
⟨L∀∃, I⟩-algebra is locally finite if every element has a finite support. Hence, we can prove
the following functional representation theorem.

Theorem 2. Every locally finite polyadic L-algebra of infinite dimension is isomorphic
to a functional polyadic L-algebra.

As a case study, we investigate the algebraization of first-order relevant logics. Let LRQ =
⟨{∧,∨,∼, ◦, 1,→}, Con, Pred,∀, I, ρ⟩ where Con is a set of name constant symbols (i.e.
0-ary functional symbols), Pred is a set of predicate symbols of varying arities, I is a
countable set of variables, and ρ is an arity function. A polyadic ⟨LRQ, I⟩-De Morgan
Monoid is an algebra of the form:

A := ⟨A;∧,∨,∼, ◦,→, 1, ⟨∀AJ | J ⊆ω I⟩, ⟨SAσ | σ ∈ I(I)⟩⟩

that satisfies the following axioms:

(Poly) Axioms of polyadic ⟨L∀, I⟩-algebras

(DMM) The defining equations of De Morgan Monoids

(Q1) ∀J1 = 1;

(Q2) ∀Jp ⩽ p;

(Q3) ∀J(p ∧ q) = ∀Jp ∧ ∀Jq;

(Q4) ∀J∀Jp = ∀Jp =∼ ∀J ∼ ∀Jp;

(Q5) ∀J(p→ q) ⩽ (∀Jp→ ∀Jq);

(Q6) ∀J(∀Jp→ ∀Jq) = ∀Jp→ ∀Jq;

(Q7) ∀J(p ∨ q) =∼ ∀J ∼ p ∨ ∀Jq.

We can construct functional polyadic De Morgan Monoids similarly. Therefore, we have
the following theorem.

Theorem 3. Every functional polyadic ⟨LRQ, I⟩-De Morgan Monoid is a polyadic
⟨LRQ, V ar⟩-De Morgan Monoid.
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Tractable deductive systems approximating classical propositional logic (CPL) have in-
terest in areas that require models of bounded rationality (see [3]). In a series of papers
culminating in [1], depth-bounded approximations have been studied, which can be intu-
itively related to the deduction power of resource-bounded agents. Among these approx-
imations, the so-called weak ones are defined in terms of the depth of derivations within
a KE-KI system, and are decidable in polynomial time whenever their associated depth
is suitably parameterized. The 0-depth approximation can’t be characterized by a set of
finitely valued matrices. So far, two alternative semantics have been given to character-
ize that basic approximation and, recursively, all of its successors. Namely, a modular
one and a 3-valued non-deterministic one [1, Sec. 1.3, 1.5]. Both are well motivated
and intuitive for the 0-depth approximation, though not necessarily for those of greater
depth. In this work, we introduce a game semantics which in our opinion provides a more
intuitive framework for the whole hierarchy of approximations. Namely, we define a game
where negative constraints are associated with understanding the informational meaning
of the connectives, while resource consumption is transparently modeled by the expense
of questions that are within a finite number. Although related to standard dialogical
accounts [4], our question-answer framework seems more intuitive in the context of the
approximations.

Proof-theoretical background We work with system N T in Table 1, formulated
with signed formulas of the form TA or FA, meaning that the agent “holds the information
that A is true (respectively, false)” [1, Sec. 2.1]. It results from combining two complete
systems for CPL: the refutation system KE and the direct-proof system KI; respectively
related to, but more efficient than, Tableaux and truth-tables. Like Natural Deduction,
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T A
T A ∨ B

F A
F B

F A ∨ B
F A

F A ∧ B

T A
T B

T A ∧ B
F A

T A → B
T B

T A → B

T A
F B

F A → B

T A
F ¬A

F A
T ¬A

T A ∨ B
F A
T B

F A ∨ B
F A

F A ∧ B
T A
F B

T A ∧ B
T A

T A → B
T A
T B

T A → B
F B
F A

F A → B
T A

F A → B
F B

T ¬A
F A

F ¬A
T A

T A ∨ A
T A

F A ∧ A
F A

TA FA

Table 1: N T (symmetry of ∨ and ∧ is assumed for brevity)

N T has introduction and elimination rules, though those that are non-branching and
involve only information practically available to the agent and with which she can operate.
The only branching rule implements the Principle of Bivalence (PB), which allows for the
introduction of hypothetical information from no premises and thus can be used anywhere
in a derivation. An unrestricted application of PB isn’t amenable to proof-search, but
it can be restricted to applications on the set of subformulas of the initial assumptions
without affecting completeness. In this regard, the introduction rules can potentially be
applied on and on, yielding ever more complex formulas. Yet, they can also be tamed so
as to satisfy the subformula property while preserving completeness.
It’s in terms of the PB rule that a measure of complexity of derivations is introduced.
Namely, a derivation’s depth is defined as the maximum number of nested applications of
PB needed to obtain it. N T is advantageous over KE or KI alone, since it reduces the
number of PB instances required to obtain a derivation and is closer to human reasoning.
This generates a hierarchy of k-depth approximations to CPL, each one tractable whenever
the application of PB and the introduction rules are restricted to a suitable subset of
formulas as conclusions. Less restrictions on that subset yield deductively more powerful
approximations, and tractability crucially depends on appropriate restrictions thereof.

Negative constraints A valuation is a mapping v from any set of formulas Φ to the set
of values {0, 1, ?}, respectively standing for informational truth, falsity and indeterminacy.
These values are partially ordered by the usual flat relation ⪯, defined as ? ⪯ x and
x ⪯ x for each x ∈ {0, 1, ?}. If v, w are valuations on Φ, then w is a refinement of
v, , if and only if v(A) ⪯ w(A) for all A ∈ Φ. It is proper, if there is a B ∈ Φ such
that v(B) ≺ w(B). We introduce concise notation for refinements consisting of changing
the value of a single formula: vA:=x is a refinement of v such that vA:=x(A) = x and
vA:=x(B) = v(B) for A,B ∈ Φ, B ̸= A, x ∈ {0, 1, ? }. The classical truth conditions
imposed by, e.g. the standard truth-tables, are not suitable for the notion of informational
truth. For example, if an agent holds the information that A ∨ B is true, she does not
necessarily holds the information that A is true or that B is true. Similarly for all cases
where the reading of the classical truth-table going from the formula to its components
is informationally non-deterministic. This prevents us from giving a direct definition
of admissible valuation. Instead, the negative constraints expressed in the tables below
detect valuations that are inadmissible for any agent who ‘understands’ the informational
meaning of the connectives:
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A B A ∨ B
0 0 1
1 ? 0
? 1 0

A B A ∧ B
0 ? 1
? 0 1
1 1 0

A B A → B
1 0 1
0 ? 0
? 1 0

A ¬A
1 1
0 0

the main connective of a formula. An agent who understands this meaning can update her
information state by uniquely determining, from her practically available or operational
information, the value of formulas that were previously indeterminate. For example, if
she holds that A ∧ B is false and B is true, then she can update her state with A being
false by complying with the tables for negative constraints, since the refined state with A
being true is inadmissible. This ‘local’ task is computationally and cognitively easy.

Basic game Our semantics is defined in terms of a win-lose perfect information game
of two players. An approximation game Gk(Γ, C) is given by a set of formulas Γ, a single
formula C and parameter k ∈ N. In the basic version of the game, we fix the set of formulas
available to the players during the game (the ‘game arena’) to the set of subformulas of
Γ ∪ {C}, denoted sub(Γ ∪ {C}). This set constitutes the ‘smallest’ game board. Now,
the goal of the first player called Questioner is to show that C follows from the set of
initial assumptions Γ, while the goal of the second player, Responder, is the opposite. For
any i ∈ N, a state Si = (Γi, vi, ni) of a game Gk(Γ, C) is given by a set of formulas Γi, a
valuation vi : Γi ∪ {C} → {0, 1, ?} and a parameter ni ⩽ k. The valuation vi represents
explicit information currently held by Q, which is updated during the game via admissible
refinements. The number ni is a counter for the number of questions used in the game
up to the state Si.
At the beginning of a game, i.e. at the state S0, v0 evaluates all the formulas in Γ to 1,
while C and all the formulas in sub(Γ ∪ {C}) \ Γ are evaluated to ?. The value of n0 is
set to 0.

Moves The moves in the approximation game consist of admissible (possibly improper)
refinements of a current valuation.
An answer consists of determining the value of some currently indeterminate formula B,
a task that is only allowed if there is a unique admissible proper refinement determining
B. A question is an explicit request for a determinate value of a formula A, currently
indeterminate. A question itself does not involve a change of the current valuation. An
inadmissibility detection means that Q found a currently indeterminate formula such that
each of the two proper refinements making it determinate is inadmissible. It intuitively
corresponds to detecting that the answers given by R, if any, lead to a situation violating
the negative constraints.
Formally, a move is a couple lA, such that A is a formula and l ∈ {0, 1, ?,⋏} is a label.
Sequences of moves are called histories, so h = l1A1 . . . lmAm. We denote by H the set of
all histories and by h ⊑ h′ the relation ‘h is a subsequence of h′’.
Let Si = (Γi, vi, ni) be the current state of a game and hi be the current history, that is
the history up to Si. Then a move lA is legal in Si if and only if it has not been played
(i.e. hjlA ̸⊑ hi with j < i) and:
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• (question) l =?, ni < k, and at least one of the proper refinements vA:=1
i and vA:=0

i

is admissible, then the game proceeds to Si+1 = (Γi, vi, ni + 1); or

• (answer) l ∈ {0, 1} and there is a unique admissible proper refinement vA:=l
i , then

the game proceeds to Si+1 = (Γi ∪ {A}, vA:=l
i+1 , ni); or

• (inadmissibility) l = ⋏ and neither proper refinement vA:=0
i nor vA:=1

i is admissi-
ble, then the game proceeds to Si+1 = Si (and ends).

Player function The roles of players are not symmetric, the possibilities of R are quite
restricted, since he cannot ask questions and can answer only if Q explicitly asks. In
contrast, Q can ask questions any time and she can also play answers, which can be
seen as replies to an ‘implicit’ question Q asks to herself, thus updating her explicit
information. Q can also detect inadmissibility in the sense mentioned above, using the
⋏-move. Formally, the only histories which are moves for R are those of the form h?A
for some h ∈ H. All the other histories, including the empty one, are moves for Q.

End of the game Winning conditions for Q are simple, either the valuation of the con-
clusion C is set to 1 in some move (either by Q or by R) or she detects an inadmissibility.
R wins if Q cannot move any more, which includes the case when she has spent all her k
questions. In contrast, setting the conclusion false does not suffice, for Q might still spot
inadmissibility on a formula in the remaining part of the game.
Formally, hi is a terminal history and Si is a terminal state of the game Gk(Γ, C) iff:

• (conclusion true) hi = hi−11C and consequently vi(C) = 1;

• (inadmissibility detected) hi = hi−1 ⋏ A, and thus neither proper refinement
with vi(A) = 0 nor vi(A) = 1 of vi is admissible;

• (no moves) hi ̸= hi−1?A, ni = k, and there is no B ∈ Γi for which there is a unique
proper admissible refinement vB:=l

i , l ∈ {0, 1}.

There are no special procedural rules in the basic version of the game. Q starts the game
and then plays answers and questions in an arbitrary order as long as she can, i.e. until
the end of the game is reached. R moves only when asked a question. No player can
repeat her/his moves according to the definition of a legal move.

Correspondence theorem We show that here is a k-depth proof of TC from T Γ
in N T over the sub-bounded (‘analytic’) search space [1, 2.1] if and only if there is a
winning strategy for Q in the basic game Gk(Γ, C).
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Adequacy and intuitiveness Some natural liberalizations of the basic version of the
game are, for example: (i) setting a wider ‘game arena’, in particular, allowing questions
from a superset of sub(Γ∪{C}); (ii) allowing for controlled move repetition. By contrast,
some natural restrictions are, for instance: (i) Q asks only when she cannot answer
herself (corresponding to pushing PB as down as possible); (ii) questions restricted to
atomic formulas. In any case, a remarkable intuition is that questions are a resource
worth keeping! Actually, it is exactly when Q exploits the information she holds as much
as possible that the answers of R correspond only to the introduction of information that
was not even implicitly contained in the information held by Q.
Thoughtful questions correspond to resource savings, while hasty questions correspond to
a wasteful play. Indeed, question selection is not a trivial task, whose difficulty increases
proportionally with the number of questions needed and the freedom on the subset from
which these are selected. The levels of the hierarchy of approximations, under proof-
theoretic restrictions, can intuitively be associated with increasingly better questioners,
in terms of their ‘ingenuity’ when selecting questions, under suitable playing freedom.
More liberalized settings are naturally associated with more competent questioners, and
thus with more efficient playing in that the number of questions needed can dramatically
decrease.
Strategies by the Questioner arise naturally when balancing her question ‘budget’ with
playing freedom and competence thereof. These strategies intuitively correspond to dif-
ferent procedures when implementing the background proof-theory.
Finally, we envisage extensions of our semantics to non-classical depth-bounded approxi-
mations, such as FDE [2] and IPL, by modifying our game in the spirit of dialogics.
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In this contribution we introduce and study a logico-algebraic notion of conditional oper-
ator. A conditional statement is a hypothetical proposition of the form

“If [antecedent] is the case, then [consequent] is the case”,

where the antecedent is assumed to be true. Such a notion can be formalized by expanding
the language of classical logic by a binary operator a/b that reads as “a given b”.
A most well-known approach in this direction comes from a philosophical perspective
developed first by Stalnaker [9, 10], and further analyzed by Lewis [5], that in order to
axiomatize the operator / ground their investigation on particular Kripke-like structures.
In particular, Lewis defines a hierarchy of logics for conditionals, which have been shown
to be algebraizable in [7] with respect to varieties of Boolean algebras with operators,
named Lewis variably strict conditional algebras or V-algebras.
The novel approach we propose here is grounded in the algebraic setting of Boolean
algebras, where we show that there is a natural way of formalizing conditional statements.

The algebraic intuition

Given a Boolean algebra B and an element b in B, one can define a new Boolean algebra,
say B/b, intuitively obtained by assuming that b is true. More in details, one considers
the congruence collapsing b and the truth constant 1, and then B/b is the corresponding
quotient. Then the idea is to define a conditional operator / such that a/b represents
the element a as seen in the quotient B/b, mapped back to B. The particular structural
properties of Boolean algebras allow us to do so in a natural way.
Note that if b ̸= 0 the quotient B/b is actually a retract of B, which means that if we
call πb the natural epimorphism πb : B → B/b, there is an injective homomorphism
ιb : B/b→ B such that πb ◦ ιb is the identity map.
The idea is then to consider

a/b := ιb ◦ πb(a). (0.1)

150



The Logic Algebra and Truth Degrees (LATD) 2025

We observe that the map ιb is not uniquely determined, meaning that there can be different
injective homomorphisms ι, ι′ such that πb ◦ ι = πb ◦ ι′ is the identity; distinct choices yield
distinct values for a/b.
Now, in order to be able to define an operator / over the algebra B, one needs to consider
all the different quotients, determined by all choices of elements b ∈ B. Then, if 0 ̸= b ⩽ c,
by general algebraic arguments one gets a natural way of looking at nested conditionals;
indeed it holds that (B/c)/πc(b) = B/b, which means that B/b is a quotient of B/c,
and actually also its retract. It is then natural to ask that the choices for ιb and ιc be
compatible, in the sense that there is a way of choosing the embedding ιπc(b) so that

ιb = ιc ◦ ιπc(b), (0.2)

which yields in particular that a/b = (a/b)/c whenever b ⩽ c.
The case where b = 0 needs to be considered separately, since the associated quotient
is the trivial algebra that cannot be embedded back into B. Since intuitively we are
considering the quotients by an element b to mean that “b is true”, the ex falso quodlibet
suggests that we map all elements to 1, i.e:

a/0 := 1. (0.3)

The idea is then to use Stone duality to translate the above conditions to the dual setting;
in other words, we generate the intended models as algebras of sets.

The standard models via Stone duality

For simplicity, let us describe our setup restricting to finite algebras. By the finite version
of Stone duality, we now see the algebra B as an algebra of sets, say that B = S (X) for
a set X. Then the above reasoning translates to the following.
Given Y ⊆ X, the natural epimorphism πY : S (X) → S (Y ) dualizes to the identity
map idY : Y → X, and the embedding ιY : S (Y )→ S (X) dualizes to a surjective map
fY : X → Y , such that fY ◦ idY = idY ; in other words, we are asking that fY restricted
to Y is the identity. Moreover, consider Y ⊆ Z ⊆ X. Then the compatibility condition
(0.2) becomes on the dual fY = fZY ◦ fZ , where fZY is the dual of the map ιπZ(Y ). The
standard models are those that originate by the above postulates; let us be more precise.

Definition 1. Given a set X, we say that a class of surjective functions F = {fZY : Z →
Y : ∅ ̸= Y ⊆ Z ⊆ X} with fZY : Z → Y is compatible with X if:

1. fXY restricted to Y is the identity on Y ;

2. fXY = fZY ◦ fXZ .

We now define the class of standard models as algebras of sets.
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Definition 2. A standard model is an algebra with operations {∧,∨,¬, /, 0, 1} that is a
Boolean algebra of sets S (X) for some set X with / defined as follows from a class of
functions F compatible with X:

Y/Z := (fXZ )−1(Y ∩ Z)

for any Y, Z ⊆ X and Z ̸= ∅, and for any Y ⊆ X we set Y/∅ := X.

The variety of Quonditional Algebras

Let us call the variety of algebras generated by the standard models QA, and the algebras
therein Quonditional Algebras.
In this work, we prove that QA is a subvariety of the variety of Lewis variably strict
conditional algebras VA. In particular, with respect to VA one needs to add the algebraic
identities characterizing the models of Stalnaker’s logic of conditionals [5, 9, 7]:

x ∧ y ⩽ y/x ⩽ x→ y; y/x ∨ ¬y/x = 1,

plus the algebraic version of a condition called uniformity in [5], and the axiom arising
from Condition 0.2:

x/y = (x/y)/(y ∨ z).

Interestingly, this last axiom, which here arises from a purely algebraic compatibility
condition, has been discussed in the literature through the name of flattening in [1]; there
it is used to axiomatize a logic of conditionals introduced in [3], which introduced a
particularly simple special case of ordering semantics for conditionals based on functions
from the natural numbers to the set of possible worlds.
We then provide an algebraic study of this variety, which in particular turns out to be
a discriminator variety. In a variety of algebras with a Boolean reduct like in this case,
this means that the variety is generated by algebras with a unary term t such that

t(0) = 0 and t(x) = 1, if x ̸= 0;

specifically, we show that all standard models have as discriminator term t(x) = ¬(0/x).
The fact that QA is a discriminator variety, in particular entails that the classes of sub-
directly irreducible, directly indecomposable, and simple algebras in QA coincide, and in
this case they are exactly the class of (isomorphic copies of) standard models.
Finally, we study the duality theory for QA, in terms of Stone spaces with a ternary
relation. With this respect, we observe that the binary operator / is not simply an
application of Jonnson-Tarski duality for Boolean algebras with (modal) operators [4];
indeed, the models are not Boolean algebras with an operator in the usual sense, since /
is not additive on both arguments (more precisely, it only distributes over meets on the
consequent) and it cannot be recovered from a unary modal operator. In particular, we
base this analysis on the duality for VA presented in [8].
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Bi-Intuitionistic Logic

Definition 1. Let L := (∧,∨,→,←,¬,∼, ?) be a formal algebraic language of signature
(2, 2, 2, 2, 1, 1, 0), called bi-intuitionistic language. Given a sublanguage L1 ⊆ L , we
denote its set of formulas built up from a denumerable set of variables {p, q, . . . } by
FmL1 . If φ ∈ FmL1 , then var(φ) denotes the set of variables occurring in φ. A logic in
L1 is a finitary consequence relation ⊢ on FmL1 that is also substitution invariant. We
write Γ ⊢ φ instead of (Γ, φ) ∈ ⊢. If ∅ ⊢ φ then φ is called a theorem of ⊢, and we will
use the shorthand notation ⊢ φ.
Let L0 ⊆ L1 ⊆ L be sublanguages. If ⊢1 is a logic in L1, then the L0-fragment of ⊢1
is the restriction of ⊢1 to FmL0 . If ⊢0 is a logic in L0, then ⊢1 is an extension of ⊢0 if
⊢0 ⊆ ⊢1. If moreover L0 = L1 and there exists Σ ⊆ FmL0 such that

Γ ⊢1 φ ⇐⇒ Γ ∪ Σ ⊢0 φ

for all Γ∪{φ} ⊆ FmL0 , we call ⊢1 an axiomatic extension of ⊢0. In the case that Σ = {ψ},
we will sometimes write ⊢1 = ⊢0 + ψ.

Bi-intuitionistic logic bi-IPC is the conservative extension of intuitionistic logic IPC ob-
tained by enlarging the intuitionistic language with the connectives ← and ∼, called
co-implication and co-negation, and demanding that they behave dually to → and ¬,
respectively. In this way, bi-IPC achieves a symmetry, which IPC lacks, between the
connectives ∧,→,¬, ? and ∨,←,∼,⊤. The Kripke semantics of bi-IPC [10] provides a
transparent interpretation of co-implication: given a Kripke model M, a point x in M,
and formulas φ, ψ, then

M, x |= φ← ψ ⇐⇒ ∃y ⩽ x (M, y |= φ and M, y ̸|= ψ).
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Using this equivalence, the intended behavior of co-negation also becomes clear, because
the formula ∼p↔ (⊤ ← p) is a theorem of bi-IPC.
Equipped with these new connectives, bi-IPC achieves significantly greater expressivity
than IPC. For instance, if the points of a Kripke frame are interpreted as states in time,
the language of bi-IPC is expressive enough to talk about the past, something that is not
possible in IPC. In fact, Gödel’s interpretation of IPC into the modal logic S4 can be
extended to an interpretation of bi-IPC into the temporal modal logic tense-S4 [12].
The greater symmetry of bi-IPC with respect to IPC is reflected by the fact that bi-IPC is
algebraized in the sense of [4] by the variety bi-HA of bi-Heyting algebras [9], i.e., Heyting
algebras whose order duals are also Heyting algebras. As a consequence, we can (and will)
identify bi-IPC with the logic induced by the class of matrices {⟨A, {1}⟩ : A ∈ bi-HA}, and
sometimes denote it by ⊢bi-IPC. Notably [6], for all Γ ∪ {φ} ⊆ FmL we have

Γ ⊢bi-IPC φ ⇐⇒ if M is a Kripke model, then M |= Γ implies M |= φ.

Projective Unification

Let L0 be a sublanguage of the bi-intuitionistic language L and ⊢ a logic in L0. A
formula φ ∈ FmL0 is said to be unifiable in ⊢ if we have ⊢ σ(φ), for some substitution
σ. In this case, σ is called a ⊢-unifier of φ, or simply a unifier of φ, when the logic ⊢ is
clear from the context. If moreover the language L0 contains the connectives L nd and
→, and φ ⊢ p ↔ σ(p) holds for every p ∈ var(φ), then σ is called a projective unifier of
φ.
If σ and τ are two unifiers of φ, we say that σ is at least as general as τ , denoted by
σ ⩽ τ , if there exists a substitution µ such that ⊢ σ(p)↔ µ ◦ τ(p), for every p ∈ var(φ).
A set E of unifiers of φ is said to be a basis if: for every unifier τ of φ, there exists σ ∈ E
such that σ ⩽ τ ; and for all σ, σ′ ∈ E, if σ ⩽ σ′ then σ = σ′. In particular, if E = {σ} is
a one-element basis, then σ is called a most general unifier of φ. It is easy to see that a
projective unifier of φ is always a most general unifier of φ. We call φ unitary if it admits
a most general unifier and projective if it admits a projective unifier. Accordingly, the
logic ⊢ is said to be unitary (resp. projective) if every unifiable formula is unitary (resp.
projective).
In the first part of this talk, I will present an unpublished joint work with Damiano
Fornasiere and Quentin Gougeon, where we characterized the projective bi-intermediate
logics (i.e., consistent axiomatic extensions of bi-IPC): they are exactly those which have a
theorem of the form1 (¬∼)np→ (¬∼)n+1p, for some n ∈ ω. Compare this to [13], where
it is shown that the projective intermediate logics (i.e., consistent axiomatic extensions
of IPC) are exactly those which extend the Gödel-Dummett logic GD := IPC + (p →
q)∨(q → p). And although being an extension of the bi-intuitionistic Gödel-Dummett logic
bi-GD := bi-IPC +(p→ q) ∨ (q → p) is a sufficient condition for a bi-intermediate logic to

1For n ∈ ω and φ ∈ FmL , we define (¬∼)nφ recursively by (¬∼)0φ := φ and (¬∼)n+1φ :=
¬
(
∼(¬∼)nφ

)
.
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be projective (because ¬∼p→ (¬∼)2p is a theorem of bi-GD, see [2]), it is not necessary.
For example, since (¬∼)2p → (¬∼)3p is a theorem of bi-IPC +¬

(
(q ← p) ∧ (p ← q)

)
,

our characterization ensures that this bi-intermediate logic is projective, but it is not an
extension of bi-GD [2].
Semantically, bi-intermediate logics with a theorem of the form (¬∼)np→ (¬∼)n+1p can
be characterized by the property of having a natural bound for the zigzag depth of the
Kripke frames which validate them, a notion that we proceed to explain. If u and v are
points in a Kripke frame F, we say that v can be reached from u after n-many zigzags
if there are x1, y1, . . . , xn ∈ F such that u ⩽ x1 ⩾ y1 ⩽ x2 ⩾ y2 ⩽ . . . ⩽ xn ⩾ v. We
then define, for every U ⊆ F, the set (↓↑)nU of points of F that can be reached from a
point in U after n-many zigzags. Notably, if M = (F, V ) is a Kripke model on F, then
V
(
(¬∼)nφ

)
= (↓↑)nV (φ) for all φ ∈ FmL . Using this equality, one can easily show that

F |= (¬∼)np→ (¬∼)n+1p ⇐⇒ ↑(↓↑)nU = (↓↑)n+1U for every upset U of F,

and when these conditions are satisfied, we say that F has n-bounded zigzag depth.
That a bi-intermediate logic ⊢ with a theorem of the form (¬∼)np → (¬∼)n+1p must
be projective already follows from the literature: in [11], it is shown that such logics
are exactly those with a discriminator term, whereas in [5], it is established that for an
algebraizable logic (in particular, for all bi-intermediate logics), having a discriminator
term is a sufficient condition for projectivity.
In order to prove the converse, i.e., that any projective bi-intermediate logic ⊢ must
contain a theorem of the form (¬∼)np → (¬∼)n+1p, we introduce for each n ∈ ω the
formula

θn := (¬∼)n+2p→ (¬∼)2n+4¬(¬∼)n¬p,
and prove that ⊢ θn forces ⊢ (¬∼)2n+3p → (¬∼)2n+4p. We then assume that ⊢ is
projective, so the fact that the formula φ := p → ¬∼p is unifiable in ⊢ (simply take a
substitution that sends p to ⊤) entails that it must have a projective unifier σ. It follows
that φ ⊢ p↔ σ(p). By using the Deduction Theorem for bi-intermediate logics [6], which
states that

Γ, φ ⊢ ψ ⇐⇒ ∃n ∈ ω
(
Γ ⊢ (¬∼)nφ→ ψ

)
,

for every Γ ∪ {φ, ψ} ⊆ FmL , we infer that ⊢ (¬∼)nφ →
(
p ↔ σ(p)

)
, for some n ∈ ω.

Then, with a view to contradiction, we assume that ⊬ (¬∼)2n+3p→ (¬∼)2n+4p, hence ⊬
θn by above. After some semantical combinatorics, the aforementioned consequence of the
Deduction Theorem, together with ⊬ θn, is enough to arrive at the desired contradiction.
We also showed that bi-IPC is not unitary, by proving that while the formula p → ¬∼p
is unifiable in bi-IPC, it does not admit a most general unifier.
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Structural Completeness

Let L0 be a sublanguage of the bi-intuitionistic language L and ⊢ a logic in L0. A rule
is an expression of the form Γ ▷ φ, where Γ ∪ {φ} ⊆ FmL0 is finite. A rule Γ ▷ φ is said
to be valid in ⊢ if Γ ⊢ φ, and admissible in ⊢ if for every substitution σ we have that
⊢ σ[Γ] implies ⊢ σ(φ) (that is, if a substitution σ is a ⊢-unifier of all the formulas in Γ,
then it must also be a ⊢-unifier of φ). We denote by ⊢+ Γ ▷ φ the least (wrt. inclusion)
logic in L0 containing ⊢ ∪ (Γ, φ). The logic ⊢ is said to be structurally complete if every
admissible rule is also valid (the converse holds in general, by substitution invariance).
We denote the least (wrt. inclusion) structurally complete logic in L0 containing ⊢ by
Sc(⊢), and call it the structural completeness of ⊢.
Let bi-IPC− be the (∧,∨,¬,∼)-fragment of bi-IPC. A standard and straightforward argu-
ment shows that this is the logic induced by the class of matrices {⟨A, {1}⟩ : A ∈ bi-PDL},
where bi-PDL denotes the variety of double pseudocomplemented distributive lattices. No-
tably, this class of algebras enjoys a restricted version of the celebrated Priestley duality
that associates to each A ∈ bi-PDL its dual bi-p-space A∗ (see, e.g., [4]). And conversely,
to each bi-p-space X we associate its double pseudocomplemented dual X ∗. Using this
duality, one can show that the class Mod∗(bi-IPC−) of reduced matrix models of bi-IPC−

satisfies the equality

Mod∗(bi-IPC−) = {⟨A, {1}⟩ : A ∈ bi-PDL and dp(A∗) ⩽ 2},

where dp(A∗) denotes the depth of the underlying poset of A∗.
In the second part of this talk, I will present an unpublished joint work with Tommaso
Moraschini, where we proved that, except for the classical propositional calculus CPC,
no consistent and locally finite axiomatic extension of bi-IPC− is structurally complete2.
This result is in sharp contrast with [7], where it is shown that every axiomatic extension
of the (∧,∨,¬)-fragment of IPC must be structurally complete.
Let ⊢ be a fixed but arbitrary locally finite axiomatic extension of bi-IPC−. If X is a bi-p-
space, we write X ∈Mod(⊢) when ⟨X ∗, {1}⟩ ∈Mod(⊢) holds true. Using the equality in
the previous display, we prove that the class FgMod∗(⊢)RSI of finitely generated relatively
subdirectly irreducible reduced matrix models of ⊢ can be identified with

{A ∈ bi-PDL : A∗ ∈Mod(⊢) and A∗ is a finite connected poset of depth ⩽ 2}.

We then interpret [8, Thm. 2.12] within our setting. This result establishes equivalent
conditions for a rule to be admissible in a logic over an arbitrary algebraic language. By
making use of the properties of bi-p-spaces and their morphisms, and the fact that ⊢
was assumed to be locally finite, we derive from the aforementioned interpretation many

2In [1], it is proved that apart from CPC, every bi-intermediate logic is not structurally complete.
However, structural completeness results are very sensitive to changes in signature. Moreover, our meth-
ods diverge significantly, because unlike all the bi-intermediate logics, the axiomatic extensions of bi-IPC−

are not algebraizable.
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equivalent conditions for a rule to be admissible in ⊢, culminating in the following3: the
rule Γ ▷φ is admissible in ⊢ iff for every finite connected poset X of depth ⩽ 2 such that
X ∈Mod(⊢), there exists Y , a finite poset of depth ⩽ 2 satisfying Y ∈Mod(⊢+ Γ ▷φ),
and such that X ∗ is a homomorphic image of Y ∗. Finally, we use the previous equivalence
to show that Sc(⊢), the structural completeness of ⊢, coincides with Log(K⊢), the logic
induced by the class of matrices

K⊢ := {
〈
(X ⊎•)∗, {1}

〉
: X ∈Mod(⊢) and X is a finite connected poset of depth ⩽ 2},

where X ⊎ • denotes the disjoint union of a poset X with a singleton poset. Then, a
semantical argument ensures that if FgMod∗(⊢)RSI contains a matrix ⟨A, {1}⟩ such that
the dual bi-p-space A∗ is not a singleton (which is the case for every consistent axiomatic
extension of bi-IPC− distinct from CPC), we have that ⊢ ⫋ Log(K⊢) = Sc(⊢), i.e, that ⊢
is not structurally complete. We are currently working on proving the analogous result
for arbitrary (i.e., not necessarily locally finite) axiomatic extensions of bi-IPC−.
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Holliday [3] introduced a non-classical logic called fundamental logic, which captures ex-
actly those properties of the connectives ∧,∨ and ¬ that hold in virtue of their intro-
duction and elimination rules in Fitch’s natural deduction system for propositional logic.
Fundamental logic is a sublogic of both (the →-free fragment of) intuitionistic logic and
orthologic. The former can be obtained from fundamental logic by adding the Reiteration
rule to Holliday’s Fitch system for fundamental logic, while the second can be obtained
by adding the Double Negation Elimination rule.

From the algebraic perspective, fundamental logic is the logical counterpart to the variety
of fundamental lattices:

Definition 1. A fundamental lattice is a tuple (L,⩽,∧,∨,¬, 0, 1) such that (L,⩽
,∧,∨, 0, 1) is a bounded lattice and ¬ : L → L is an antitone map satisfying the fol-
lowing properties:

• ¬1 = 0;

• a ∧ ¬a = 0;

• a ⩽ ¬¬a.

Since fundamental logic is weaker than both intuitionistic logic and orthologic, fundamen-
tal lattices generalize both pseudocomplemented distributive lattices and ortholattices.

In this talk based on joint projects with Wes Holliday and Juan P. Aguilera respectively,
I will present some recent results which shed some new light on the relationship between
fundamental logic, intuitionistic logic and orthologic.

First, I will discuss two translations of fundamental logic into modal orthologic and modal
intuitionistic logic. The first translation is based on the celebrated Gödel-McKinsey-Tarski
translation [4] of intuitionistic logic into S4, the modal logic of reflexive and transitive
Kripke frames. The restriction of this translation to the →-free fragment of IPC is a map
τ inductively defined as follows:

τ(p) = p;
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τ(¬φ) = ¬τ(φ);

τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ);

τ(φ ∨ ψ) = τ(φ) ∨ τ(ψ).

As it turns out, this translation also yields an embedding of fundamental logic into OS4,
the natural counterpart of S4 in orthomodal logic.

Theorem 1 (Holliday and Massas 2025). The Gödel-McKinsey-Tarski translation τ is a
full and faithful translation of fundamental logic into OS4.

A similar result can be obtained by “swapping” the roles of intuitionistic logic and ortho-
logic. Goldblatt [2] defined the following translation σ from the language of orthologic
into the language of modal logic:

σ(p) = 3p;

σ(¬φ) = ¬σ(φ);

σ(φ ∧ ψ) = σ(φ) ∧ σ(ψ);

σ(φ ∨ ψ) = 3(σ(φ) ∨ σ(ψ)).

Goldblatt shows that σ is a full and faithful translation of orthologic into the modal logic
KTB of reflexive and symmetric Kripke frames. In order to generalize this result, we define
the logic FSTB, a natural counterpart of KTB in the setting of Fischer Servi intuitionistic
modal logics [1].

Definition 2. The intuitionistic modal logic FSTB extends the Fischer Servi logic FS
with the following axioms:

φ ⊢ φ, φ ⊢ 3φ;

3 φ ⊢ φ, φ ⊢ 3 φ.

Theorem 2 (Holliday and Massas 2025). The Goldblatt translation σ is a full and faithful
translation of fundamental logic into FSTB.

These results establish that fundamental logic is, arguably, both “intuitionistic logic from
the viewpoint of orthologic”, and “orthologic from the viewpoint of intuitionistic logic”.

Lastly, I will discuss the relationship between fundamental logic and orthointuitionistic
logic, i.e., the strongest logic contained in both the→-free fragment of intuitionistic logic
and orthologic. Although fundamental logic is strictly weaker than orthointuitionistic
logic, the latter turns out to have a reasonably simple axiomatization.
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Definition 3. Let Ex be the smallest consequence relation extending fundamental logic
and closed under the following axioms:

¬¬p ∧ ¬¬q ⊢ ¬¬(p ∧ q); (Nu)

¬¬p ∧ q ∧ (r ∨ s) ⊢ p ∨ (q ∧ r) ∨ (q ∧ s); (Vi)

¬(p ∧ ((q ∧ r) ∨ (q ∧ s))) ∧ p ⊢ (q ∧ (r ∨ s)) ∨ ¬(q ∧ (r ∨ s)). (Cl)

Theorem 3 (Aguilera and Massas 2025). The logic Ex is the strongest extension of
fundamental logic that is weaker than both orthologic and intuitionistic logic.

References

[1] Gisèle Fischer Servi. On modal logic with an intuitionistic base. Studia Logica,
36:141–149, 1977.

[2] Robert I Goldblatt. Semantic analysis of orthologic. Journal of Philosophical logic,
pages 19–35, 1974.

[3] Wesley H. Holliday. A fundamental non-classical logic. Logics, 1:36–79, 2023.

[4] J. C. C. McKinsey and Alfred Tarski. Some theorems about the sentential calculi of
lewis and heyting. The Journal of Symbolic Logic, 13(1):1–15, 1948.

162



The Logic Algebra and Truth Degrees (LATD) 2025

Difference–restriction algebras
with operators

Célia Borlido1, Ganna Kudryavtseva2, and Brett McLean3

Universidade de Coimbra, CMUC, Departamento de Matemática, Coimbra,
Portugal1

Faculty of Mathematics and Physics / Institute of Mathematics, Physics and
Mechanics, University of Ljubljana2

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent
University3

cborlido@mat.uc.pt1

ganna.kudryavtseva@fmf.uni-lj.si2

brett.mclean@ugent.be3

Célia Borlido was partially supported by the Centre for Mathematics of the Uni-
versity of Coimbra - UIDB/00324/2020, funded by the Portuguese Government
through FCT/MCTES. Ganna Kudryavsteva was supported by the ARIS grants
P1-0288 and J1-60025. Brett McLean was supported by the FWO Senior Post-
doctoral Fellowship 1280024N.

Abstract

We exhibit an adjunction between a category of abstract algebras of
partial functions that we call difference–restriction algebras and a category
of Hausdorff étale spaces. Difference–restriction algebras are those algebras
isomorphic to a collection of partial functions closed under relative com-
plement and domain restriction; the morphisms are the homomorphisms.
Our adjunction generalises the adjunction between the generalised Boolean
algebras and the category of Hausdorff spaces. We define the finitary com-
patible completion of a difference–restriction algebra, and show that the
monad induced by our adjunction yields the finitary compatible comple-
tion of any difference–restriction algebra. The adjunction restricts to a
duality between the finitarily complete difference–restriction algebras and
the locally compact zero-dimensional Hausdorff étale spaces, generalising
the duality between generalised Boolean algebras and locally compact zero-
dimensional Hausdorff spaces. We then extend these adjunction, duality,
and completion results to difference–restriction algebras equipped with ar-
bitrary additional compatibility preserving operators.
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Introduction

The study of algebras of partial functions is an active area of research that investi-
gates collections of partial functions and their interrelationships from an algebraic
perspective. The partial functions are treated as abstract elements that may be
combined algebraically using various natural operations such as composition, do-
main restriction, ‘override’, or ‘update’. In pure mathematics, algebras of partial
functions arise naturally as structures such as inverse semigroups, pseudogroups,
and skew lattices. In theoretical computer science, they appear in the theories
of finite state transducers, computable functions, deterministic propositional dy-
namic logics, and separation logic. Many different selections of operations have
been considered, each leading to a different category of abstract algebras (see [9,
S 3.2] for a guide). Recently, dualities for some of these categories have started
to appear [7, 6, 8, 10, 1], opening the way for these algebras to be studied via
their duals.
In [2] and [3], we initiated a project to develop a general and modular framework
for producing and understanding dualities for such categories. For this we are
inspired strongly by Jónsson and Tarski’s theory of Boolean algebras with opera-
tors [5] and the duality between them and descriptive general frames. Our central
thesis is that in our case the appropriate base class—the analogue of Boolean
algebras—must be more than just a class of ordered structures but must record
additional compatibility data. This reflects the fact that the union of two partial
functions is not always a function.
In [2] and [3], we investigated algebras of partial functions for a signature we
believe provides the necessary order and compatibility structure. The signature
has two operations: set-theoretic relative complement and a domain restriction
operation ▷ given by: f ▷ g := {(x, y) ∈ X × Y | x ∈ dom(f) and (x, y) ∈ g}. In
[2], we gave and proved a finite equational axiomatisation for the class of isomorphs
of such algebras of partial functions [2, Theorem 5.7]. We will refer to the algebras
in this class as difference–restriction algebras. In [3], we gave a ‘discrete’ duality
between the atomic difference–restriction algebras and a category of set quotients.
The main results of the present work are the elaboration of an adjunction between
the category of difference–restriction algebras and the category of Hausdorff étale
spaces (Thm. 1) and the extension of that theorem to algebras with additional
operators (Thm. 3). We also show the monad induced by the adjunction gives
a form of finitary completion of algebras (Thm. 2/Cor. 1(i)) and the adjunction
restricts to a duality between the finitarily complete algebras and the locally
complete zero-dimensional Hausdorff étale spaces (Thm. 1/Cor. 1(ii)).

Difference–restriction algebras and adjunction

An algebra of partial functions of the signature {−,▷} is a {−,▷}-algebra
whose elements are partial functions from some (common) set X to some (com-
mon) set Y , and the interpretation of − is relative complement and the interpre-
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tation of ▷ is domain restriction.
A difference–restriction algebra is an algebra A of the signature {−,▷} that
is isomorphic to an algebra of partial functions. We denote by DRA the cate-
gory whose objects are difference–restriction algebras and whose morphisms are
homomorphisms of {−,▷}-algebras. The operation a · b := (a − (a − b)) gives
difference–restriction algebras a semilattice structure.
An étale space is a surjective local homeomorphism π : X ↠ X0 (i.e., each x ∈ X
has an open neighbourhood U on which π restricts to a homomorphism, and π(U)
is open), and π is Hausdorff if X is Hausdorff. A partial function φ : X ⇀ Y
is continuous if when V ⊆ Y is open in Y then φ−1(V ) is open in X, and φ is
proper if whenever V ⊆ Y is compact then φ−1(V ) is compact.

Definition 1. We denote by HausEt the category whose objects are Hausdorff
étale spaces π : X ↠ X0, and where a morphism from π : X ↠ X0 to ρ : Y ↠ Y0
is a continuous and proper partial function φ : X ⇀ Y satisfying the following
conditions:

(Q.1) φ preserves equivalence: if both φ(x) and φ(x′) are defined, then π(x) =
π(x′) =⇒ ρ(φ(x)) = ρ(φ(x′)); thus there is an induced φ̃ : X0 ⇀ Y0,

(Q.2) φ is fibrewise injective: for every (x0, y0) ∈ φ̃, the restriction and co-
restriction of φ induces an injective partial map φ(x0,y0) : π−1(x0) ⇀ ρ−1(y0),

(Q.3) φ is fibrewise surjective: for every (x0, y0) ∈ φ̃, the induced partial map
φ(x0,y0) is surjective (that is, the image of φ(x0,y0) is the whole of ρ−1(y0)).

Theorem 1. There exist adjoint functors F : DRA→ HausEtop and G : HausEtop →
DRA.

Roughly, F is ‘maximal filters’ and G is ‘partial sections with compact image’.

Duality and completion

Two elements of a difference–restriction algebra are compatible if a1▷a2 = a2▷a1
(corresponding to partial functions agreeing on their shared domain). The algebra
is finitarily compatibly complete provided it has joins of each finite set of
pairwise-compatible elements (corresponding to being closed under finite unions
of partial functions that agree wherever their domains overlap).
A finitary compatible completion of a difference–restriction algebra A is an
embedding ι : A ↪→ C of {−,▷}-algebras such that C is a difference–restriction
algebra and finitarily compatibly complete and ι[A] is finite-join dense in C (i.e.,
each c ∈ C is a a finite join of elements of ι[A]).

Theorem 2. For each difference–restriction algebra A, the homomorphism
ηA : A→ (G◦F )(A) is the finitary compatible completion of A, where η is the unit
of the adjunction of Theorem 1.
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We write CfinDRA for the full subcategory of DRA consisting of the difference–
restriction algebras that are finitarily compatibly complete. We write Stone+Et
for the full subcategory of HausEt consisting of the π : X ↠ X0 such that X is
locally compact and zero-dimensional.

Proposition 1. The adjunction restricts to a duality between CfinDRA and
Stone+Et.

Adjunction for difference–restriction algebras with opera-
tors

An n-ary operation Ω on A is compatibility preserving if whenever ai, a′
i are

compatible, for all i, we have that Ω(a1, . . . , an) and Ω(a′
1, . . . , a

′
n) are compatible,

and Ω is an operator if it is normal (Ω(a1, . . . , ai−1, 0, ai+1, . . . , an) = 0) and is
additive (also known as join preserving) in each argument.
Let σ be a functional signature (disjoint from {−,▷}).
The category DRA(σ) has objects: algebras of the signature {−,▷} ∪ σ whose
{−,▷}-reduct is a difference–restriction algebra, and such that the symbols of σ
are interpreted as compatibility preserving operators, and morphisms: homomor-
phisms of ({−,▷} ∪ σ)-algebras.
Let π : X ↠ X0 be a Hausdorff étale space and R an (n + 1)-ary relation on
X. The compatibility relation C ⊆ X × X is given by xCy if and only if
π(x) = π(y) =⇒ x = y. Then R has the compatibility property if given
x1Cx

′
1, . . . , xnCx

′
n and Rx1. . .xn+1 and Rx′

1. . .x
′
n+1, we have xn+1Cx

′
n+1.

Given subsets S1, . . . , Sn of X, define ΩR(S1, . . . , Sn) by ΩR(S1, . . . , Sn) :=⋃
x1∈S1,...,xn∈Sn

{xn+1 ∈ X | Rx1. . .xn+1}. The relation R is spectral if when-
ever S1, . . . , Sn ⊆ X are compact open sets, then ΩR(S1, . . . , Sn) is a com-
pact open set. The relation R is tight if, for each x1, . . . , xn+1 ∈ X, the
condition ∀S1, . . . , Sn compact and open (x1 ∈ Sn, . . . , xn ∈ Sn =⇒ xn+1 ∈
ΩR(S1, . . . , Sn)) implies Rx1, . . . , xn+1.
Take a partial function φ : X ⇀ Y and (n + 1)-ary relations RX and RY on X
and Y . Then φ satisfies the reverse forth condition if whenever RXx1. . .xn+1
and φ(x1), . . . , φ(xn) are defined, then φ(xn+1) is defined and RY φ(x1). . .φ(xn+1).
The partial map φ satisfies the back condition if whenever φ(xn+1) is defined
and RY y1. . .ynφ(xn+1), then there exist x1, . . . , xn ∈ dom(φ) such that φ(x1) =
y1, . . . , φ(xn) = yn and RXx1. . .xn+1.

Definition 2. The category HausEt(σ) has objects: the objects of HausEt
equipped with, for each Ω ∈ σ, an (n+ 1)-ary tight spectral relation RΩ that has
the compatibility property, where n is the arity of Ω, and morphisms: morphisms
of HausEt that satisfy the reverse forth condition and the back condition with
respect to RΩ, for every Ω ∈ σ.
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Theorem 3. There is an adjunction F ′ : DRA(σ) ⊣ HausEt(σ)op :G′ that ex-
tends the adjunction F ⊣ G of Theorem 1 in the sense that the appropriate reducts
of F ′(A) and G′(π : X ↠ X0) equal F (A) and G(π : X ↠ X0), respectively.

Corollary 1. (i) For every algebra A in DRA(σ), the embedding ηA : A ↪→
(G′ ◦ F ′)(A) is the finitary compatible completion of A. (A finitary compatible
completion in DRA(σ) should be a morphism of DRA(σ), i.e. also preserve the
additional operators, as ηA indeed does.)
(ii) There is a duality between the categories CfinDRA(σ) and Stone+Et(σ)op.
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Toward a more systematic analysis of the several variants of supporting algebras
for various kinds of propositional and modal many-valued logics, FLew-algebras
(Full Lambek calculus with exchange and weakening, see, e.g., [14]) were introduced
to generalize the most common algebraic structures, such as Gödel algebras (G,
for short) [3], MV-algebras [8] (MV) on which Łukasiewicz logic is based [21],
product algebras (Π) [17], and Heyting algebras (H) that may provide an infinitely-
valued interpretation of intuitionistic logic [11, 16, 19]. Each of these logics offers
unique capabilities that have proven beneficial across various disciplines, including
mathematics, computer science, and particularly artificial intelligence, where they
enhance expressive power and decision-making processes; this is particularly true
in the case of modal many-valued logics [12, 9], which have already been applied
in different contexts but are just starting to be studied in depth.
The structure of FLew-algebras is of interest for both mathematicians and com-
puter scientists; indeed, FLew-algebras are precisely bounded integral commutative
residuated lattices. This means that an FLew-algebra A is lattice ordered by a
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partial ordering relation ⩽, with a top (1) and a bottom (0) element. When
the order is linear, we use the term FLew-chain. The additional structure that
distinguishes FLew-algebras from common bounded lattices is given by another
internal operation, usually denoted by ·, and assumed to be commutative, asso-
ciative and having 1 as neutral element, sometimes referred to as t-norm, that is,
such that (A, ·, 1) is a monoid; hence, we will often refer to the multiplication as
the monoidal operation. Intuitively, the multiplication in an FLew-algebra gen-
eralizes the interpretation of the logical conjunction. Moreover, an FLew-algebra
is assumed to have the residuation property, that is, it is assumed that for any
elements a, b ∈ A, there exists a unique maximal element x such that a · x ≤ b;
this element is denoted by a → b, and the implication operator → generalizes
the logical implication. Most commonly used algebras in the field of fuzzy and
many-valued logics are particular cases of some FLew-algebra (A, ·,→, 1, 0); each
specific case differs from the others in how the monoidal operation is defined.
While fuzzy logics are generally based on infinite algebras (typically built on
the interval [0, 1] of real numbers), the finite case is very interesting in practi-
cal cases [2]; among other contexts, datasets in machine learning are finite by
definition, naturally leading to finite descriptions of patterns.
The question of probing a variety of finite algebras in order to count its non-
isomorphic elements is a very natural one. De Baets and Mesiar [5] count the
number of different t-norms that can be built on a chain of length n. Bartušek
and Navara [6] solve the same problem by proposing a tool that actually gener-
ates all such t-norms. Belohlavek and Vychodil [7] again answer the question of
generating all different residuated lattices, although, according to their definition,
they actually focus on FLew-algebras of size n. Finally, Galatos and Jipsen [15]
publish the set of all different FLew-algebras of size up to 6. Notwithstanding, the
actual algorithm used for generation is published only in [7], and no database of
FLew-algebras is actually current available for further analysis. Furthermore, no
explicit bound for the number of different FLew-algebras has been given, and the
numerical results are limited to the published constants.
In this work, we approach, again, the problem of counting and generating all
different FLew-chains of size n, and, in particular: (i) we use a novel approach
to this problem based on a topological interpretation of residuation theory, which
shares some similarities with Scott’s work in domain theory [22, 1]; (ii) we provide
an explicit bound for the number of different FLew-chains of size n; (iii) we provide
an accessible and open-source algorithmic tool for generating and counting FLew-
chains as part of a long-term open-source framework for learning and reasoning,
namely Sole.jl1. In particular, the tool can be found in the ManyValuedLogics
submodule of the SoleLogics.jl2 package, which provides the core data structures
and functions for an easy manipulation of propositional, modal and many-valued
logics. To ease the reader, the tool is also available in a standalone repository3.

1https://github.com/aclai-lab/Sole.jl
2https://github.com/aclai-lab/SoleLogics.jl
3https://github.com/aclai-lab/LATD2025a
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While arbitrary implicit operations are defined in terms of existential positive
formulas, most familiar ones can be defined simply by conjunctions of equations.
For instance,

1. the implicit operation of “taking the inverse y of x” is defined in monoids
by

(x · y ≈ 1) & (y · x ≈ 1);

2. that of “taking the complement y of x” is defined in bounded distributive
lattices by

(x ∧ y ≈ 0) & (x ∨ y ≈ 1);

3. that of “taking the meet y of x1 and x2” is defined in Hilbert algebras by

(y → x1 ≈ 1) & (y → x2 ≈ 1) & (x1 → (x2 → y) ≈ 1).

The following result explains, at least in part, why this is the case. To this end,
given a class of algebras K and a term t(x1, . . . , xn), we say that a first-order
formula φ(x1, . . . , xn, y) defines t in K when

K ⊨ t(x1, . . . , xn) ≈ y ↔ φ(x1, . . . , xn, y).

Theorem 1. Let K be a quasivariety with the amalgamation property and M a pp
expansion of K. Then for each term t(x1, . . . , xn) of M there exists a conjunction
of equations φt(x1, . . . , xn, y) in the language of K which defines t in M.

The possibility of defining implicit operations in terms of conjunctions of equations
(as opposed to arbitrary pp formulas) acquires special importance when applied
to Beth companions.
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Definition 1. Let K be a quasivariety. A class of algebras M is said to be a Beth
completion of K when it is a Beth companion and for each term t(x1, . . . , xn) of
M there exists a conjunction of equations φt(x1, . . . , xn, y) in the language of K
which defines t in M.

For instance, Abelian groups, Boolean algebras, and implicative semilattices
are Beth completions of the quasivarieties of commutative cancellative monoids,
bounded distributive lattices, and Hilbert algebras, respectively.
In view of the following result, the Beth completion of a quasivariety K is unique
(up to term-equivalence), when it exists. In this case, a class is a Beth completion
of K iff it is a Beth companion of K.

Proposition 1. Let K be a quasivariety with a Beth completion. Then every Beth
companion of K is a Beth completion of K. Furthermore, all the Beth completions
of K are term-equivalent.

From Theorem 1 we obtain the following sufficient condition for a Beth companion
to be a Beth completion.

Theorem 2. Let K be a quasivariety with the amalgamation property. If K has a
Beth companion, then it also has a Beth completion.

Notably, Beth completions retain many interesting properties from their original
quasivariety. The next observation captures a few of them.

Proposition 2. The following conditions hold for a quasivariety K with a Beth
completion M:

1. if K is a variety, then so is M;

2. every lattice equation valid in the lattices of K-congruences of the members
of K is also valid in the lattices of M-congruences of the members of M.

Our aim is to show that, not only do Beth completions retain some of the proper-
ties of their original quasivarieties, but that these properties are often significantly
enhanced in Beth completions (see Theorem 3).
To this end, we recall that a variety is said to be arithmetical when it is both
congruence distributive and congruence permutable. Furthermore, we recall that
a member A of a quasivariety K is relatively finitely subdirectly irreducible (RFSI
for short) when the identity congruence of A is meet-irreducible in the lattice
ConK(A) of K-congruences of K. The class of RFSI members of K will be denoted
by Krfsi. When K is a variety, we drop the “relatively” and write simply Kfsi.
Lastly, a variety is said to have the congruence extension property when for each
A,B ∈ K such that A is a subalgebra of B, every congruence of A can be extended
to a congruence of B.
Our main result takes the following form.
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Theorem 3. Let K be a relatively congruence distributive quasivariety such that
Krfsi is closed under nontrivial subalgebras. The following conditions hold for
every Beth completion M of K:

1. M is a variety;

2. M is arithmetical;

3. M has the congruence extension property;

4. Mfsi is closed under nontrivial subalgebras.

In other words, in the Beth completion we gain the congruence extension property,
as well as the following improvements:

quasivariety 7−→ variety;
relative congruence distributivity 7−→ arithmeticity.

At the same time, we preserve our assumptions on the class of RFSI algebras.
For instance, Theorem 3 provides a general explanation of why, moving from
arbitrary bounded distributive lattices to Boolean algebras, we gain congruence
permutability. For recall that the class of Boolean algebras is the Beth completion
of the class of bounded distributive lattices which, in turn, is amenable to Theorem
3. In view of condition 2, Boolean algebras must be arithmetical and, therefore,
congruence permutable.
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In dealing with optimization problems, a crucial role is played by the maximal
satisfiability problem of the Boolean logic, henceforth denoted by MaxSATB, as
well as its weighted version, denoted by WMaxSATB, and the partial (weighted)
satisfiability problem P(W)MaxSATB. These problems are quite relevant since
they can have theoretical as well as practical applications. Indeed, WMaxSATB

and MaxSATB are among the first examples of FPNP and FPNP[O(log(n))] com-
plete problems1 (see [4]). Furthermore, one of the most commonly used strategies
to prove the hardness of a given problem with respect to the aforementioned com-
plexity classes is to find a metric reduction of it starting from WMaxSATB or
MaxSATB. At the same time, many real-world problems can be encoded using the
PMaxSATB framework (see, for example, [1] for an application to data analysis).
The first attempts to study the maximum satisfiability problem within the con-
text of Łukasiewicz logic, denoted as MaxSAT, can be found in [5] and [3]. The
main motivation for this generalization, as outlined in the introduction of [5], is
that Łukasiewicz logic offers a richer framework, allowing certain problems to be
naturally expressed in this language– for instance, problems involving continuous
variables. In [3], the authors proved that MaxSAT is FPNP[O(log(n))]-complete.
In many real-life applications, it is often beneficial to prioritize the satisfiability of
certain formulas over others. This can be achieved by assigning to each formula φ a
weight aφ, denoting its relative importance. Furthermore, Łukasiewicz logic allows
us to deal with intermediate truth values between absolute falsity and absolute
truth. Putting these two remarks together, the first results we present in this
talk is a (weighted) version of the maximum satisfiability problem in Łukasiewicz
logic. Specifically, we say that a formula φ is r-satisfiable, with r ∈ (0, 1], if
there exists a valuation v such that v(φ) ⩾ r. In the context of Łukasiewicz
logic, it was proved in [6] that r-satisfiability is NP-complete. Furthermore, in
the concluding remarks of [3], the authors defined the maximum r-satisfiability
problem, MaxSATr, similarly to the MaxSAT problem, with the distinction that it
focuses on the maximum number of formulas r-satisfied by a valuation. Hence,

1We recall that a function f belongs to the class FPNP if it is computable by a polynomial-
bounded Turing machine with oracle NP. Similarly, f belongs to FPNP[O(log(n))] if f ∈ FPNP

and f is computable using at most O(log(n)) queries.
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we consider the following problem.

Definition 1. Let r ∈ (0, 1] be a rational number, and let F be a (non-empty)
multiset of Łukasiewicz formulas. Let 0 ̸= aφ ∈ N be the weight associated to
the formula φ ∈ F . The WMaxSATr problem is the optimization problem that
computes the maximum 0 ⩽ k ⩽

∑
φ∈F aφ such that there exists a valuation v

such that k = ∑
φ∈S aφ, where S ⊆ F is the multiset of all formulas r-satisfied by

v.

The problem WMaxSAT is obtained from Definition 1 by fixing r = 1. The
problem MaxSATr is obtained from Definition 1 when all weights are equal to 1.
The first results we show are contained in next theorem.

Theorem 1. The following hold.

1. WMaxSAT is FPNP-complete.

2. MaxSATr is FPNP[O(log(n))]-complete.

3. WMaxSATr is FPNP-complete.

Specifically, Theorem 1(1) is proved by reducing the (weighted) satisfiability in
Łukasiewicz logic to a MIP problem, similarly to what is done in [2]; Theorem 1(3)
is proved using a metric reduction to WMaxSAT. The proof of Theorem 1(2) is
inspired by the results of [3], where the authors define the problem but leave open
the task of finding its computational complexity.

To conclude this talk, we introduce the partial (weighted) r-satisfiability problem,
denoted by P(W)MaxSATr, in the context of Łukasiewicz logic. Formally, we
consider the following problem.

Definition 2. Let r ∈ (0, 1] be a rational number, and let H and S be two
multiset of Łukasiewicz formulas, with S ̸= ∅. Let 0 ̸= aφ ∈ N be the weight
associated to the formula φ ∈ S. The PWMaxSATr problem is the optimization
problem that computes the maximum 0 ⩽ k ⩽

∑
φ∈S aφ such that there exists

a valuation v such that v[H] = 1 and k = ∑
φ∈T aφ, where T ⊆ S the multiset

of formulas r-satisfied by v. If H is not satisfiable, by definition the solution of
PWMaxSATr is −∞.

The problem PWMaxSAT is obtained from Definition 2 by fixing r = 1, and
the problem PMaxSATr is obtained by Definition 2 when aφ = 1 for all φ ∈ S.
The following result can be proved by generalizing the arguments used to prove
Theorem 1.

Theorem 2. The following hold.

1. PWMaxSAT is FPNP-complete.
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2. PMaxSATr is FPNP[O(log(n))]-complete.

3. PWMaxSATr is FPNP-complete.

We remark that PWMaxSATr, as it happens for its Boolean counterpart, has a lot
of potential to real-world applications. Indeed, any continuous non-linear func-
tions in n variables f(x1, . . . , xn) : [0, 1]n → [0, 1] can be approximated using
rational piecewise linear functions. By the results of [7], such functions can be
represented by a pair (H,φ), where H∪{φ} is a set of Łukasiewicz formulas in the
propositional variables Var and {x1, . . . , xn} ⊆ Var. This representation has the
property that, for any continuous and piecewise function f represented by (H,φ),
if v is a [0, 1]-valued evaluation that satisfies H, then f(v(x1), . . . , v(xn)) = v(φ).
Hence, PWMaxSATr can be used as a potential framework for the resolution of
many optimization problems.

Finally, if time allows it, we explore appropriate versions of the satisfiability prob-
lems outlined above within the context of fuzzy probabilistic logics.
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Abstract

The proper quasivariety BC A of Bochvar algebras, which serves as the
equivalent algebraic semantics of Bochvar’s external logic, was introduced
by Finn and Grigolia in [6] and extensively studied in [4]. We show that
the algebraic category of Bochvar algebras is equivalent to a category whose
objects are pairs consisting of a Boolean algebra and a meet-subsemilattice
(with unit) of the same. We also show that one of the functors that induce
the equivalence can be equivalently defined either by means of a Płonka
sum construction, or by means of a twist product construction.

In 1938, the Russian mathematician Dmitri Anatolyevich Bochvar published the
influential paper “On a three-valued logical calculus and its application to the
analysis of the paradoxes of the classical extended functional calculus”[1], in which
he introduced a 3-valued logic aimed at resolving set-theoretic and semantic para-
doxes. His proposal diverged significantly from other related approaches in at
least two key aspects. First and foremost, the third, non-classical value 1

2 was
infectious in any sentential compound involving the standard, or internal, propo-
sitional connectives ¬,∧,∨. This means that a formula would be assigned the
value 1

2 iff at least one variable within it was assigned 1
2 . This third value was

interpreted as “paradoxical”. Second, the language of Bochvar’s logic included ex-
ternal unary connectives J0, J1, J2 (written in Finn and Grigolia’s notation) that,
unlike the internal connectives, could output only Boolean values.
Although the merits of Bochvar’s logic as a solution to the paradoxes remain
highly debatable, its influence on successive developments in 3-valued logic has
been significant. The internal fragment of Bochvar’s logic was characterised by
Urquhart [6] through the imposition of a variable inclusion strainer on the conse-
quence relation of classical propositional logic. Building on this result, a general
framework for right variable inclusion logics has been proposed (see [1] for a de-
tailed account). In this context, the celebrated algebraic construction of Płonka
sums is extended from algebras to logical matrices. Specifically, each logic L is
paired with a “right variable inclusion companion” Lr whose matrix models are
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decomposed as Płonka sums of models of L. Notably, Bochvar’s internal logic
serves as the right variable inclusion companion of classical logic.
Studies on Bochvar’s external logic, by contrast, are comparatively scarce. Finn
and Grigolia [6] provided an algebraic semantics for it with respect to the quasi-
variety of Bochvar algebras. However, their work does not employ the standard
toolbox or terminology of abstract algebraic logic. Adopting a more mainstream
approach, the papers [2, 4] extend Finn and Grigolia’s completeness theorem to
a full-fledged algebraisability result, and offer a representation of Bochvar alge-
bras that refines the Płonka sum representations of their involutive bisemilattice
reducts. We present Bochvar algebras in a simplified signature where the definable
operation symbols J0, J1 are omitted.

Definition 1. A Bochvar algebra is an algebra A = ⟨A,∧,∨,¬, J2 , 0, 1⟩ of type
⟨2, 2, 1, 1, 0, 0⟩ that satisfies the following identities:

1. φ ∨ φ ≈ φ;

2. φ ∨ ψ ≈ ψ ∨ φ;

3. (φ ∨ ψ) ∨ δ ≈ φ ∨ (ψ ∨ δ);

4. φ ∧ (ψ ∨ δ) ≈ (φ ∧ ψ) ∨ (φ ∧ δ);

5. ¬(¬φ) ≈ φ;

6. ¬1 ≈ 0;

7. ¬(φ ∨ ψ) ≈ ¬φ ∧ ¬ψ;

8. 0 ∨ φ ≈ φ;

9. J2¬J2φ ≈ ¬J2φ;

10. J2φ ≈ ¬(J2¬φ ∨ ¬(J2φ ∨ J2¬φ));

11. J2φ ∨ ¬J2φ ≈ 1;

12. J2(φ ∨ ψ) ≈ (J2φ ∧ J2ψ) ∨ (J2φ ∧ J2¬ψ) ∨ (J2¬φ ∧ J2ψ);

13. J2¬φ ≈ J2¬ψ & J2φ ≈ J2ψ ⇒ φ ≈ ψ.

We show that the algebraic category of Bochvar algebras is equivalent to a category
whose objects are pairs consisting of a Boolean algebra and a meet-subsemilattice
(with unit) of the same. This equivalence instantiates the general theory of ad-
junctions between quasivarieties proposed by Moraschini [8].

Definition 2. A Bochvar system is a pair B = ⟨B, I⟩ such that B =
⟨B,∧,∨,¬, 0, 1⟩ is a Boolean algebra and I = ⟨I,∧, 1⟩ is a meet-subsemilattice
with unit of B.
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Let B denote the algebraic category of Bochvar algebras. We now define a cate-
gory S whose objects are Bochvar systems. If B1 = ⟨B1, I1⟩ and B2 = ⟨B2, I2⟩ are
objects in S, a morphism from B1 to B2 is a homomorphism g from B1 to B2 such
that g(i) ∈ I2 for every i ∈ I1. Observe that any such g is also a homomorphism
from I1 to I2.

Theorem 1. The categories B and S are equivalent.

Proof. (Sketch.) Let B = ⟨B, I⟩ be a Bochvar system. We define

AB =
〈
{Ai}i∈I , I∂, {pij : i ⩽I∂ j}

〉
such that:

• for all i ∈ I, Ai := B/[i);

• I∂ is the lower-bounded join-semilattice dual to I;

• for all i, j ∈ I such that i ⩽I∂ j, pij(a/[i)) := (a/[i))/[j).

AB is a semilattice direct system of Boolean algebras, whence the Płonka sum
Pł(Ai)i∈I over it is an involutive bisemilattice [1, Ch. 2]. By the results in [4],
this is the underlying involutive bisemilattice of a unique Bochvar algebra, noted
AB.
For the other direction, let

A = ⟨A,∧,∨,¬, J2, 0, 1⟩

be a Bochvar algebra, whose involutive bisemilattice reduct decomposes as
Pł(Ai)i∈I . We define BA := ⟨Ai0 ,K⟩, where K = {JA

2 (1Ai) : i ∈ I}, and for
JA

2 (1Ai), JA
2 (1Aj ) ∈ K, JA

2 (1Ai) ⩽K JA
2 (1Aj ) iff j ⩽I i. We have that BA is a

Bochvar system.
We now define the map Γ as follows:

• If A is an object in B, let Γ(A) := BA.

• If f : A1 → A2 is a morphism in B, let Γ(f) be the restriction of f to A1i0
.

Similarly, we define the map Ξ as follows:

• If B is an object in S, let Ξ(B) := AB.

• If g : B1 → B2 is a morphism in S, let Ξ(g) be defined as follows:
Ξ(g)(a/[i)) := g(a)/[g(i)).

Γ and Ξ are functors that induce an equivalence between B and S.
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Interestingly, the functor Ξ can be equivalently defined by resorting not to a
Płonka-type construction, but rather to the definition of a twist product algebra.

Definition 3. Let B = ⟨B, I⟩ be a Bochvar system. The twist product algebra
over B is the algebra

Tw(B) = ⟨T,∧Tw(B),∨Tw(B),¬Tw(B), JTw(B)
2 , 0Tw(B), 1Tw(B)⟩

of type ⟨2, 2, 1, 1, 0, 0⟩, such that (omitting superscripts when denoting the oper-
ations in B):

• T := {⟨a, b⟩ : a, b ∈ B, a ∧ b = 0, a ∨ b ∈ I};

• ⟨a, b⟩ ∧Tw(B) ⟨c, d⟩ := ⟨a ∧ c, (b ∧ d) ∨ (b ∧ c) ∨ (a ∧ d)⟩;

• ⟨a, b⟩ ∨Tw(B) ⟨c, d⟩ := ⟨(a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c), b ∧ d⟩;

• ¬Tw(B)⟨a, b⟩ := ⟨b, a⟩;

• JTw(B)
2 ⟨a, b⟩ := ⟨a,¬a⟩;

• 0Tw(B) := ⟨0, 1⟩;

• 1Tw(B) := ⟨1, 0⟩.

Theorem 2. Tw(B) is a Bochvar algebra that is isomorphic to AB.

This observation might point both to a possible extension of the theory of twist
products beyond the lattice-ordered case, and to a further exploration of the rela-
tionships between the constructions of Płonka sums and twist products. Moreover,
it might relate to recent work on twist constructions and residuated lattices with
conuclei [5, 9].
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Modal logics offer a valid treatment for temporal and spatial data, which are
critical in modeling many real-world scenarios and, therefore, are becoming more
popular by the day in artificial intelligence applications, specifically when dealing
with symbolic machine learning. Some notable examples are [18, 20], introducing
modal logics for treating interval temporal relations and topological (i.e., spatial)
relations, respectively. However, practitioners handling temporal and spatial data
typically encounter challenges, as sensing and discretizing signals that often intro-
duce inaccuracies in the data. Fuzzy logics are renowned as a common approach
to deal with uncertainty and unclear boundaries in the data. Furthermore, Melvin
Fitting proposed in [12] a many-valued approach leveraging Heyting algebras to
tackle many-expert scenarios, another compelling application in artificial intelli-
gence. In this talk, we want to present a framework that is general enough to treat
modal many-valued logics, including Fitting’s proposal, and can be endowed with
reasoning tools suitable for real-world applications.
FLew-algebras (Full Lambek calculus with exchange and weakening, see, e.g., [14])
proved to be a valid candidate, as it generalizes most common algebraic structures
of many-valued logics, such as Gödel algebras (G, for short) [3], MV-algebras [8]
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(MV) on which Łukasiewicz logic is based [21], product algebras (Π) [17], and
Heyting algebras (H). FLew-algebras are bounded integral commutative residuated
lattices; i.e., an FLew-algebra A is a lattice ordered by a partial ordering relation ⩽,
with a top (1) and a bottom (0) element. When the order is linear, we use the term
FLew-chain. The difference between FLew-algebras and common bounded lattices
is the presence of an internal operation, usually denoted by ·, and assumed to be
commutative, associative and having 1 as a neutral element, usually referred to
as t-norm, that is, such that (A, ·, 1) is a monoid; hence, we will often refer to
the multiplication as the monoidal operation. Intuitively, the multiplication in an
FLew-algebra generalizes the interpretation of the logical conjunction. Moreover,
an FLew-algebra is assumed to have the residuation property, that is, it is assumed
that for fixed elements a, b ∈ A, there exists a unique maximal element x such
that a · x ≤ b; this element is denoted by a → b, and the implication operator
→ generalizes the logical implication. All commonly used algebras in the field of
many-valued logics are particular cases of some FLew-algebra (A, ·,→, 1, 0); each
specific case differs from the others in how the monoidal operation is defined.
While modal many-valued logics [12, 9] have already been applied in different con-
texts, they are just starting to be studied in depth. Automated theorem proving
for modal FLew-algebra formulas encompassing a many-valued generalization of
Halpern and Shoham’s interval temporal logic [18] has been tackled in [4] using
a tableaux system inspired by the one proposed by Melvin Fitting in [13] and al-
ready extended to Heyting Algebras in [10]. When tackling formulas satisfiability
and validity in FLew-algebras (and, more generally, many-valued logics defined
over a lattice representing a partial order), the problem can be relaxed to finding,
given a formula φ and a value α in the algebra, if a model exists such that (resp.,
for all possible models) the formula has at least value α. This problem is referred
to α-satisfiability (resp. α-validity).
In this work, we propose a different approach leveraging well-known sat and smt
solvers, such as z3, with the hope of gaining better performance while maintain-
ing some sort of interpretability. In order to do so, one has to translate the
α-satisfiability problem to a two-sorted first-order problem, with a first sort A
representing the values in the FLew-algebra and a second sort W representing
the worlds, such that given a formula φ interpreted on an FLew-algebra A, φ is
α-satisfiable if and only if it exists M , w ∈ W so that VM (w, a) ⪰ α.
We provide an accessible and open-source algorithmic tool for (i) defining finite
FLew-algebras, (ii) writing formulas in a specified FLew-algebra, and (iii) asking
α-satisfiability for a given value α in the algebra of the formula through a first-
order translation and making use of a sat or a smt solver, such as z3. This tool is
offered as part of a long-term open-source framework for learning and reasoning,
namely Sole.jl1. In particular, the tool can be found in the ManyValuedLogics
submodule of the SoleLogics.jl2 package, which provides the core data structures
and functions for an easy manipulation of propositional, modal and many-valued

1https://github.com/aclai-lab/Sole.jl
2https://github.com/aclai-lab/SoleLogics.jl
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logics. For the benefit the reader, the tool is also available in a standalone repos-
itory3, using many-valued Halpern and Shoham’s interval temporal logic as an
example.
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Internal actions have been introduced in [3] by F. Borceux, G. Janelidze, and G. M.
Kelly as a means to generalize the connection between actions and split extensions
from groups and Lie algebras to arbitrary semi-abelian categories. However, in
certain settings such as Orzech categories of interest [20] internal actions are often
expressed in terms of external actions, i.e., via a set of maps which satisfy a certain
set of identities. In this talk, we are gonna study external actions and split
extensions in the category Hoops of hoops, with a focus on those split extensions
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which strongly splits. In particular, we say that a split extension

X A Bk
p

s

strongly splits, or has a strong section, if the morphism s is a strong section of p,
i.e. if the equation

a→ s(b) = sp(a)→ s(b)
holds for every a ∈ A and b ∈ B.
When a split extension

X A Bk
p

s

in Hoops strongly splits, then the semidirect product X ⋉ξ B of X and B with
respect to the corresponding internal action ξ is given by the set

{(x, b) ∈ X ×B | s(b)→ (s(b) · x) = x}

together with the operations

(x, b)→ (y, b′) = (s(b′ → b)→ (x→ y), b→ b′),

(x, b) · (y, b′) = (s(b · b′)→ (s(b · b′) · x · y), b · b′)
and

1X⋊ξB = (1, 1, 1).
Split extensions with strong section in the category Hoops can be described in
terms of strong external actions [19], i.e., a pair of maps

f : B ×X → X : (b, x) 7→ fb(x),

g : B ×X → X : (b, x) 7→ gb(x)
such that

E1. fb(1) = gb(1) = 1;

E2. f1 = g1 = idX ;

E3. fb1·b2(x · gb1(x→ y)) = fb1·b2(x · (x→ y));

E4.

g(b3→(b1·b2))(fb1·b2(x · y)→ z) =
= g(b2→b3)→b1(x→ gb3→b2(y → z));
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for any b, b1, b2, b3 ∈ B and x, y, z ∈ X.
In particular, there is a bijection τB between the set EActss(B,X) of strong exter-
nal actions of B on X and the set SplExtss(B,X) of isomorphism classes of split
extensions of B by X that strongly splits. Indeed, we can define τB as the map
that sends every split extension in Hoops that strongly splits

X A B,k
p

s

to the pair of maps f, g : B ×X → X defined by

fb(x) = s(b)→ (s(b) · x) and gb(x) = s(b)→ x.

It is possibile to show that (f, g) defines a strong external action of B on X.
Moreover, the map µB which sends a strong external action f, g : B ×X → X to
the split extension of B by X

X Y B
ι1 π2

ι2

where
Y = {(x, b) ∈ X ×B| fb(x) = x}

and
(x, b)→ (y, b′) = (gb′→b(x→ y), b→ b′),

(x, b) · (y, b′) = (fb·b′(x · y), b · b′)
is the inverse of the map τB.
As a consequence, there is a natural isomorphism

τ : SplExtss(−, X) ∼= EActss(−, X),

where SplExtss(−, X) : Hoopsop → Set is the functor which assigns to any hoop
B, the set SplExtss(B,X) and

EActss(−, X) : Hoopsop → Set

is the functor which maps every hoop B to EActss(B,X).
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In recent years, many completeness or incompleteness results have been proved
for variants of monotonic proof-theoretic semantics (mPTS), see [1, 2, 3, 7, 8, 9,
13, 12, 14, 15, 16]. Below, I shall understand a model for mPTS as a set B of
atomic rules R of level n ⩾ 0 of the form

[ℜ1]
A1 . . .

[ℜn]
An

R
A

where Ai, A are atoms from the underlying language, and ℜi is an atomic rule of
level n− 2 discharged by R (i ⩽ n). That A is a consequence of Γ on B, written
Γ |=B A, is defined thus—limiting ourselves to propositional logic:

Definition 1. Γ |=B A⇐⇒

• Γ = ∅ =⇒

– A is atomic =⇒ ⊢B A

– A = B ∧ C =⇒ |=B B and |=B C

– A = B ∨ C =⇒ |=B B or |=B C

– A = B → C =⇒ B |=B C

• Γ ̸= ∅ =⇒ ∀C ⊇ B (|=C Γ =⇒ |=C A).

Definition 2. Γ |= A⇐⇒ ∀B (Γ |=B A).

—for approaches where one also takes care of constraints on the specific kinds of
(sets of) sets of atomic rules of given levels, see [9, 13, 14, 15].
These variants of mPTS have been qualified as sentential—see [13]—since they
start with a primitive notion of consequence on B, and so differ from Prawitz’s
original approach [10, 11], where consequence of A from Γ on B is defined as
existence of an argument from Γ to A valid on B—logical consequence is likewise
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defined as existence of a logically valid argument from Γ to A. Valid arguments
on B are here prior, and defined as follows (some preliminary definitions are
required).

Definition 3. An argument structure is a tree D with nodes labelled by formulas,
and edges standing for arbitrary inferences, which may discharge assumptions or
atomic rules. The leaves are the assumptions of D, while the root is the conclusion
of D.

Definition 4. D is closed if all its assumptions are discharged, and it is open
otherwise.

Definition 5. D is canonical if it ends by applying an introduction, and it is
non-canonical otherwise.

Definition 6. An inference rule R is a set of argument structures.

I write D[D∗∗/D∗] the result of replacing by D∗∗ the sub-structure D∗ of D.

Definition 7. Let σ be a function from formulas A to (closed) argument struc-
tures with conclusionA. The (closed) σ-instance Dσ of D is D[σ(A1), ..., σ(An)/A1, ..., An],
where A1, ..., An are the undischarged assumptions of D.

Definition 8. A reduction for R is a function φ from argument structures to
argument structures, defined on some D ⊆ R and such that, ∀D ∈ D,

• D is from Γ to A =⇒ φ(D) is from Γ∗ ⊆ Γ to A

• ∀σ, φ is defined on Dσ, and φ(Dσ) = φ(D)σ.

Definition 9. Let J be a set of reductions. D reduces to D∗ relative to J, written
D ⩽J D∗, if there is a sequence D1, ...,Dn such that D = D1, D∗ = Dn and,
∀i ⩽ n, Di+1 = Di[φ(D∗∗)/D∗∗] with φ ∈ J.

Definition 10. ⟨D, J⟩ is valid on B⇐⇒

• D is closed =⇒

– the conclusion A of D is atomic =⇒ D ⩽J D
∗ with D∗ closed derivation

of A in B

– D is canonical =⇒ the immediate sub-structures of D are valid on B
when paired with J

– D is non-canonical =⇒ D ⩽J D∗ with D∗ canonical valid on B when
paired with J

• D is open with assumptions A1, ..., An =⇒ ∀C ⊇ B,H ⊇ J, σ, (⟨σ(Ai),H⟩
valid on C =⇒ ⟨Dσ,H⟩ valid on C).

Definition 11. ⟨D, J⟩ is logically valid ⇐⇒ it is valid on every B.
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One might wonder whether (logical) consequence in sentential mPTS implies (log-
ical) consequence in Prawitz’s original approach, and vice versa. When the notion
of set of reductions is liberal enough, then the two approaches do coincide, whence
intuitionistic logic is incomplete relative to a Prawitzian-oriented framework with
liberal sets of reductions [6].
In a stricter reading, sets of reductions are base-independent constructive func-
tions for the uniform rewriting of argument structures. It is unclear how base-
independence should be defined more precisely, but the rough idea is that sets
of reductions are constructive (or possibly finite) sets of operations whose output
values are described by relying only on structural properties of the input values
and, in particular, with no reference to specific atomic bases and structures which
such values reduce to on those bases—this seems to be how Prawitz thinks of
reductions in [10, 11], but see also [5, 13]. Following [13], I shall call uniform
monotonic proof-theoretic semantics (umPTS) this approach.
It is not clear how to attain a direct translation from mPTS to umPTS, mainly
due to the fact that it is not clear how to prove in umPTS the mPTS clause for
the open consequence case, i.e., with Γ ̸= ∅,

Γ |=B A⇐⇒ ∀C ⊇ B (|=C Γ =⇒ |=C A).

While the =⇒ direction of this clause trivially holds in umPTS too, the⇐= might
fail. The fact that the existence of closed ⟨D, J⟩-s for the elements of Γ valid on
C implies the existence of a closed ⟨D∗,H⟩ for A also valid on C, may not imply
in any straightforward way the existence of an open ⟨D∗∗,K⟩ from Γ to A valid
on B, when K is constrained to be uniform.
In my talk, however, I show that this issue can be overcome, and that incomplete-
ness of intuitionistic logic with respect to umPTS can be actually proved without
any need of translating results from mPTS to umPTS. This is done along the
lines of some incompleteness proofs given in [1, 2, 8], which apply to a framework
where the notion of validity is defined in terms of (intuitionistic) constructions.
As said, sets of reductions in umPTS are partial constructive functions of a special
kind, so proofs referred to a notion of validity defined in terms of (intuitionistic)
constructions may not be automatically transferable to umPTS. A rough attempt
at turning the kind of constructions used in the incompleteness proofs from [1,
2, 8] into sets of reductions in umPTS, seems in fact to suggest that the sets of
reductions thereby obtained would not be base-independent.
On the other hand, Pezlar [4] has recently proved that a generalised Kreisel-
Putnam rule—where the antecedent of the premise is a Harrop formula—can be
constructively justified through a selector with schematic elimination and equality
type-theoretic rules. The formulation of Pezlar’s selector in a Natural Deduction
formalism seems to hint at the fact that something similar might be done for
umPTS and, hence, that an incompleteness proof along the lines of [1, 2, 8] can be
found also for Prawitz’s original framework—monotonically understood. Indeed,
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this holds for the intuitionistically underivable Kreisel-Putnam rule restricted to
atoms, i.e.,

p→ q ∨ r
KPa(p→ q) ∨ (p→ r)

by exhibiting a set of reductions for this rule which is clearly base-independent—
however the concept of base-independence is defined—so the following is provable.

Theorem 1. There is a base-independent set of reductions J such that the open
argument structure KPa is valid on every B.

The required set of reductions is made up of the five functions φ1, φ2,i, φ3,i defined
as follows.

1
[A]
D

B ∨ C →I , 1A→ B ∨ C
(A→ B) ∨ (A→ C)

φ1=⇒

A
D

B ∨ C →I
A→ B ∨ C

(A→ B) ∨ (A→ C)

A
D
Bi ∨I,i

B1 ∨B2 →I
A→ B1 ∨B2

(A→ B1) ∨ (A→ B2)
φ2,i=⇒

1
[A]
D
Bi ∨I,i

B1 ∨B2 →I , 1A→ B1 ∨B2
(A→ B1) ∨ (A→ B2)

1
[A]
D
Bi ∨I,i

B1 ∨B2 →I , 1A→ B1 ∨B2
(A→ B1) ∨ (A→ B2)

φ3,i=⇒

1
[A]
D
Bi →I , 1A→ Bi ∨I,i(A→ B1) ∨ (A→ B2)

where i = 1, 2. The key observation for Theorem 1 is that reduction sequences out
of a base-independent J are just syntactic manipulations of argument structures,
thus they go through over all bases, independently of whether the input argument
structures are valid relative to J on given (extensions of) atomic bases. In other
words, when saying that non-canonical D is valid relative to J over B, we should
read as independent of each other the two conjuncts which this condition amounts
to via Definition 10, namely
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(every closed instance of) D reduces relative to J to a canonical argument
structure D∗

and

the immediate sub-structures of D∗ are valid relative to B when paired with J.

From Theorem 1 we immediately draw the following conclusion.

Corollary 1. Intuitionistic logic is incomplete over umPTS.

When Prawitz’s completeness conjecture from [11] is formulated in a monotonic
approach, umPTS is the kind of proof-theoretic semantics which the conjecture
should refer to, whence Corollary 1 implies a refutation of the conjecture for this
“orthodox" Prawitzian framework. Of course, one could require additional con-
straints on the notion of logical validity of arguments, e.g. some closure condition
like

⟨D, J⟩ ⇐⇒ ∀⋆, ⟨⋆(D), J⋆⟩ is valid on every B

where ⋆ is a function defined on formulas A that replaces atomic sub-formulas of
A by formulas, ⋆(D) is the result of replacing each formula occurrence of A in D

by ⋆(A), and J⋆ is a set of reductions such that, for every φ ∈ J, there is φ⋆ ∈ J⋆

such that, when φ is defined on D∗ and φ(D∗) = D∗∗, then φ⋆ is defined on ⋆(D∗)
and φ⋆(⋆(D∗)) = ⋆(D∗∗)—observe that it may well be that J = J⋆. However, this
is not the kind of logical validity which Prawitz refers his conjecture to in [11].
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Hölder’s theorem [3, 5, 6], one of the early classical results about ordered groups,
states that a totally ordered group embeds into the additive ordered group of
reals R if and only if it is Archimedean (informally speaking, if and only if it
lacks infinitesimal elements). The ordered group R which features in Hölder’s
theorem lives in the variety of lattice-ordered groups, which is one of the most
prominent varieties of residuated lattices. A fruitful research programme in this
area has been to extend results about lattice-ordered groups to wider classes of
residuated lattices [1]. Two important classes for this purpose are the variety
of GBL-algebras and its subvariety of GMV-algebras [2]. These significantly ex-
tend the variety of lattice-ordered groups while still preserving some group-like
behavior. In particular, in their study of the Archimedean property in residu-
ated lattices, Ledda, Paoli and Tsinakis [4] recently extended Hölder’s theorem to
GBL-algebras, characterizing the subalgebras of the GMV-algebras R, R−, and
[0, 1] as precisely the strongly simple GBL-algebras (see below for more details).
In the present work, we further extend Hölder’s theorem beyond the residuated
setting, obtaining a result in the spirit of [4] for totally ordered monoids which
gives an abstract characterization of the dense subalgebras of the totally ordered
monoids R, R−, and [0, 1].
Some definitions will be needed to state these results. A lattice-ordered monoid,
or ℓ-monoid for short, is an algebra L = ⟨L,∧,∨, ·, 1⟩ which is both a lattice
and a monoid such that products distribute over binary meets and binary joins.
An ℓ-monoid is integral if the monoidal unit 1 is the top element of the lattice
reduct. A totally ordered monoid, or tomonoid for short, is an ℓ-monoid whose
lattice reduct is totally ordered. A residuated lattice is an ℓ-monoid equipped with
binary operations \ and / such that

y ⩽ x\z ⇐⇒ x · y ⩽ z ⇐⇒ x ⩽ z/y.

A GBL-algebra is a residuated lattice satisfying the divisibility equations

x(x\(x ∧ y)) = x ∧ y = ((x ∧ y)/x)x.

A GMV-algebra is a residuated lattice satisfying the stronger equations

x/((x ∨ y)\x) = x ∨ y = (x/(x ∨ y))\x.
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The variety of GMV-algebras in particular subsumes the varieties of ℓ-groups and
MV-algebras. Key examples of commutative GMV-algebras are the additive ℓ-
group of the reals R, its negative cone R− (an integral cancellative residuated
lattice), and the standard MV-chain [0, 1]. These GMV-algebras have some im-
portant subalgebras: the additive ℓ-group of the integers Z, its negative cone Z−,
and the subalgebras Łn of [0, 1] with the universes {0/n, 1/n, . . . , n/n} for n ⩾ 1.
We use Ł0 to denote the trivial algebra.
A residuated lattice is strongly simple if it has no non-trivial proper convex sub-
algebras. It is strongly semisimple if {1} is the intersection of all maximal proper
convex subalgebras. A commutative residuated lattice is strongly (semi)simple if
and only if it is (semi)simple in the universal algebraic sense.

Hölder’s theorem for GBL-algebras ([4, Theorem 5.6]). A GBL-algebra is
strongly simple if and only if it is isomorphic to one of the following:

(i) a subalgebra of R,

(ii) a subalgebra of R−,

(iii) a subalgebra of [0, 1].

In particular, each strongly simple GBL-algebra is commutative.

We now aim to extend this theorem to totally ordered monoids which are not
necessarily residuated. This will require two modifications.
Firstly, the lattice of convex subalgebra is really a stand-in for the lattice of left
congruences, or equivalently for the lattice of right congruences. A left congru-
ence of an ℓ-monoid L is a lattice congruence θ such that ⟨a, b⟩ ∈ θ implies
⟨ca, cb⟩ ∈ θ, and a right congruence is a lattice congruence θ such that ⟨a, b⟩ ∈ θ
implies ⟨ac, bc⟩ ∈ θ. A left congruence of a residuated lattice moreover satisfies
the condition that ⟨a, b⟩ ∈ θ implies ⟨c\a, c\b⟩ ∈ θ, while a right congruence sat-
isfies the condition that ⟨a, b⟩ ∈ θ implies ⟨a/c, b/c⟩ ∈ θ. In a residuated lattice,
the lattices of left congruences, of right congruences, and of convex subalgebras
are isomorphic. Beyond the residuated case, we need to explicitly work with the
lattices of left and right congruences.
Secondly, as a result of dropping residuation from the signature, we now have
more (left and right) congruences. The strongly simple residuated lattices R, R−,
and [0, 1] have no residuated lattice congruences besides the identity and the total
congruence. In contrast, for each non-empty downset I of [0, 1] there is an ℓ-
monoidal congruence Θ(I) such that ⟨a, b⟩ ∈ Θ(I) if and only if either a = b or
a, b ∈ I. The same holds for R−. The characteristic condition is no longer that
there are no congruences besides the identity and the total congruence. Rather,
it is that every congruence arises has the form Θ(I).
More generally, given an ℓ-monoid L, a left (right) ideal of L is a non-empty subset
I which is both a lattice ideal (a, b ∈ I implies a∨ b ∈ I) and a left (right) ideal of
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the monoid reduct: if i ∈ I and a ∈ L, then a · i ∈ L (i · a ∈ L). Each left (right)
ideal I of L induces a left (right) congruence of L as follows:

⟨a, b⟩ ∈ Θ(I) ⇐⇒ a ∨ i = b ∨ i for some i ∈ I.

Such congruences will be called left (right) ideal congruences. Notice that in an
integral tomonoid the left (right) ideals are precisely the downsets, and that each
left (right) ideal congruence of a tomonoid has at most one non-trivial congruence
class and it is a downset.
An ideal ℓ-monoid is an ℓ-monoid where each non-identity left congruence is a left
ideal congruence and each non-identity right congruence is a right ideal congru-
ence, excluding the pathological case of ℓ-monoids isomorphic to the two-element
additive tomonoid {0,+∞}. The following theorem gives a concrete description
of ideal tomonoids without a least element. The case of ideal tomonoids with a
least element is more complicated to discuss: these are either isomorphic to some
Łn or to a dense subtomonoid of [0, 1] or – and this is the complicated case – to
a certain type of tomonoid over the universe [0, 1] ∪ {+∞}.

Hölder’s theorem for ideal tomonoids without a least element. A
tomonoid without a least element is an ideal tomonoid if and only if it is iso-
morphic to one of the following:

(i) Z,

(ii) Z−,

(iii) a dense subtomonoid of R,

(iv) a dense subtomonoid of R−,

In particular, each ideal tomonoid without a least element is commutative.

The restriction to dense subtomonoids which occurs of the above theorem was
already implicit in Hölder’s theorem for GBL-algebras: every subgroup of R and
more generally every residuated sublattice of R, R−, and [0, 1] is either dense or
isomorphic to Z, Z−, or Łn for some n ∈ N. In contrast, these algebras have
subtomonoids which are neither dense nor isomorphic to Z, Z−, or Łn, and which
therefore fail to be ideal tomonoids.
To better understand the role of density, consider the subtomonoid [0, 1/2] ∪ {1}
of [0, 1]. This is a tomonoid equipped with a drastic multiplication: 1⊙ x = x =
x ⊙ 1, otherwise x ⊙ y = 0. In this tomonoid, the principal congruence ⟨1/4, 1/2⟩
is not an ideal congruence, since the equivalence class of 1/2 is the non-singleton
interval [1/4, 1/2], which is not a downset. However, had the tomonoid contained
for instance the element 9/10, its presence would force the equivalence class of 1/2
to be the interval [0, 1/2] rather than [1/4, 1/2].
The problem of describing all ideal ℓ-monoids, as opposed to merely ideal
tomonoids, remains open. We can, however, describe the finite ideal ℓ-monoids.
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These coincide with the finite semisimple GMV-algebras, or in other words with
finite MV-algebras.
The following result was first formulated as a conjecture by Peter Jipsen. This
conjecture is where the condition of being an ideal ℓ-monoid (more precisely, an
ideal join-semilattice-ordered commutative monoid) was first isolated.

Theorem. Finite ideal ℓ-monoids are precisely the ℓ-monoid reducts of finite MV-
algebras, i.e. up to isomorphism they are the finite products of the ℓ-monoids Łn
for n ∈ N.

In particular, all finite ideal ℓ-monoids are reducts of finite GMV-algebras. This
does not hold beyond the finite case. However, every ideal ℓ-monoid does satisfy
a natural ℓ-monoidal version of the GMV property, namely the last condition in
the following equivalence.

Fact. The following are equivalent for every residuated lattice L:

(i) L is a GMV-algebra, i.e. it satisfies the following equations:

x/((x ∨ y)\x) = x ∨ y = (x/(x ∨ y))\x.

(ii) L satisfies the following implications for z ⩽ x ⩽ y:

x\z ⩽ y\z =⇒ y ⩽ x, z/x ⩽ z/y =⇒ y ⩽ x.

(iii) L satisfies the following implications for z ⩽ x ⩽ y:

(xu ⩽ z implies yu ⩽ z) for all u ∈ L =⇒ y ⩽ x,

(ux ⩽ z implies uy ⩽ z) for all u ∈ L =⇒ y ⩽ x.
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∧OL 0 1/2 1

0 0 0 0
1/2 0 1/2 1
1 0 1 1

∨OL 0 1/2 1

0 0 0 1
1/2 0 1/2 1
1 1 1 1

¬

0 1
1/2 1/2

1 0

∧K 0 1/2 1

0 0 0 0
1/2 0 1/2 1/2

1 0 1/2 1

∨K 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

→OL 0 1/2 1

0 1/2 1/2 1/2
1/2 0 1/2 1
1 0 1/2 1

→DF 0 1/2 1

0 1/2 1/2 1/2
1/2 1/2 1/2 1/2

1 0 1/2 1

→F 0 1/2 1

0 1/2 1/2 1/2
1/2 0 1/2 1/2

1 0 1/2 1

Figure 1: Tables of the three-valued connectives.

Indicative conditionals are the simplest sentences of the if-then type that occur in
natural language, concerning what could be true – in opposition to counterfactu-
als, which concern eventualities that are no longer possible. In Boolean proposi-
tional logic, an indicative conditional “if φ then ψ” is traditionally formalized as
the material implication φ→ ψ, or equivalently the disjunction ¬φ∨ψ. This ap-
proach has several limitations that have been remarked early on in the history of
modern logic: in particular, a number of authors argued that conditionals having a
false antecedent – which are true in Boolean logic independently of the consequent
– should instead be regarded as lacking a (classical) truth value. Such a proposal
can be traced back at least to Reichenbach (1935), De Finetti (1936), and Quine
(1950). “Uttering a conditional amounts to making a conditional assertion: the
speaker is committed to the truth of the consequent when the antecedent is true,
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but committed to neither truth nor falsity of the consequent when the antecedent
is false” [1, p. 188]; see also [2] and the references cited therein.
Among various possible ways to formalize the above intuition, a very simple one
consists in expanding the classical truth values (0,1) with a third “gap” value (here
denoted by 1/2) assigned to conditional sentences with a false antecedent; and then
extending the truth tables of the propositional connectives in accordance with the
above interpretation. In particular, with regard to the implication, one would
certainly require 0 → x = 1/2, whereas in other cases (e.g. 1/2 → x) intuitions
may differ (see Figure 1). As for the designated elements to be preserved in
derivations, it is natural to include (besides 1) also 1/2, at least if one wants to
retain basic classical tautologies such as the law of identity (φ→ φ).1

The above constraints determine a range of three-valued propositional logics of in-
dicative conditionals which turn out to be, in general, not subclassical (i.e. weaker
than) but rather incomparable with classical two-valued logic. In particular, they
may be connexive in that they validate the (classically contingent) formulas known
as Aristotle’s thesis ¬(φ → ¬φ) and Boethius’ theses: (φ → ψ) → ¬(φ → ¬ψ)
and (φ→ ¬ψ)→ ¬(φ→ ψ).
Logics of indicative conditionals are discussed at length in the papers [1, 2, 3],
which are the main bibliographical source and the starting point for the present
research. Here we consider these propositional systems from the standpoint of
algebraic logic: in particular, we determine which among them are algebraizable
in the sense of Blok and Pigozzi [4], and study the corresponding algebra-based
semantics. Besides the ones discussed in [1, 2], we shall also define a few systems
obtained by varying the above-mentioned basic parameters (in particular, the
designated elements) that do not appear to have been considered in the existing
literature; our interest in the latter logics is essentially formal, but future research
may prove them to be also relevant to the issues discussed above.
As is well known, a standard way of introducing a propositional logic is to fix an
algebra A together with a subset D ⊆ A of designated elements to be preserved in
derivations. Such a pair ⟨A, D⟩ is known as a (logical) matrix2, and we may unam-
biguously denote by Log⟨A, D⟩ the propositional consequence relation determined
by the matrix ⟨A, D⟩. For the logics of interest here, the universe of the algebra
is always going to be the three-element set A3 = {0, 1/2,1}, with variations only
in the algebraic operations considered, and possibly the set of designated values.
The basic systems are the following (in all cases, we fix D = {1/2,1}):

1. Log⟨DF3, D⟩, where DF3 = ⟨A3;∧K,∨K,→DF,¬⟩, which is the logic proposed
by De Finetti [5]. We show that, up to definitional equivalence, this system
coincides with Priest’s logic of paradox LP [6] expanded with the propositional

1A peculiar consequence of this setup is that there will be valid formulas whose negation is
also valid: for instance the formula ¬φ→ (φ→ φ), which turns out to be equivalent (within the
systems considered here) to 1/2 viewed as a propositional constant. This makes the logics under
consideration not only paraconsistent but actually contradictory in the sense of Wansing [13].

2See, e.g., [14] for further background on the theory of logical matrices.
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constant 1/2.

2. Log⟨OL3, D⟩, where OL3 = ⟨A3;∧OL,∨OL,→OL,¬⟩. This is the structural
weakening of Cooper’s logic of ordinary discourse [7], dubbed sOL in the recent
papers [8, 9].

3. Log⟨CN3, D⟩, where CN3 = ⟨A3;∧K,∨K,→OL,¬⟩. A system introduced by
Cantwell [10] as the logic of conditional negation (CN) and independently con-
sidered by a number of other authors3. We prove that CN may be viewed as a
term-definable subsystem of sOL.

4. Log⟨F3, D⟩, where F3 = ⟨A3;∧K,∨K,→F,¬⟩, a logic introduced by Farrell [11].
We show that this system is definitionally equivalent to CN (hence, also to a
definable subsystem of sOL).
Besides the above systems, we consider a few related ones that, as far as we are
aware, have not yet appeared in the literature. These are obtained by:

5. Varying the set D of designated elements on A3: for instance, logics that result
from taking D = {1/2}, which is a natural choice at least from a formal standpoint.

6. Considering a set of matrices based on the same algebra. In this way we study
degree-preserving logics associated to the above-mentioned algebras (see e.g. [12]).

In each case we determine whether the system is algebraizable, thereby settling
some issues on the algebraization of logics of indicative conditionals that were
raised but left unsolved in [2]. Algebraizable logics are well-behaved in many
ways, and in particular one may easily obtain a presentation of the algebraic
semantics from an axiomatization of the logic, and vice-versa. In these cases we
produce such axiomatizations, and also introduce twist representations (akin to
that in [9]) that provide further insight into the algebraic semantics; in all the
other cases we nevertheless employ algebraic logic techniques to try and obtain
some understanding of the models of the logic under consideration.
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This work is about one of the most challenging trends of research in non-classical
logic which is the attempt to combine different non-classical approaches together,
in our case many-valued and modal logic. This kind of combination offers the skill
of dealing with modal notions like belief, knowledge, and obligations, in interaction
with other aspects of reasoning that can be best handled using many-valued logics,
for instance, vagueness, incompleteness, and uncertainty. In fact, the study that
we are going to introduce could be especially interesting from the point of view
of Theoretical Computer Science and Artificial Intelligence.
In the present study, we consider the extension of Nelson residuated lattices (N3)
with an unary modal operator. We introduce a variety of modal Nelson lattices
which we prove that they are characterized by twist structures.
In order to reach this result, we will first introduce an extension for the modal
setting of the one well-known construction of Nelson lattices called twist struc-
tures, whose importance has been growing in recent years within the study of
algebras related to non-classical logics (see [1, 2, 5]). Our proposed extension is
more general than others considered in the literature because it is not required to
be monotone with respect to modal operators (see [4]).

We assume the reader knows the main properties and definitions about residuated
lattices and Heyting algebras. In addition, a residuated lattice is called involutive
if it is bounded and it satisfies the double negation equation:

a = ¬¬a.

A Nelson residuated lattice or simply Nelson lattice (N3) is an involutive residu-
ated lattice satisfying:
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((a2 → b) ∧ ((¬b)2 → ¬a))→ (a→ b) = ⊤.

Definition 1. Given a Heyting algebra H, we shall denote by D(H) the filter of
dense elements of H, i.e. D(H) = {x ∈ H : −x = ?}.

A filter F of H is said to be Boolean provided the quotient H/F is a Boolean
algebra. It is well known and easy to check that a filter F of the Heyting algebra
H is Boolean if and only if D(H) ⊆ F . The Boolean filters of H, ordered by
inclusion, form a lattice, having the improper filter H as the greatest element and
D(H) as the smallest element.
With all these elements, we can reproduce the twist-structures corresponding to
N3-lattices.

Theorem 1. (Sendlewski + Theorem 3.1 in [1].) Given a Heyting algebra

H = ⟨H,∧,∨,⇀,⊤, ?⟩

and a Boolean filter F of H let

R(H, F ) := {(x, y) ∈ H ×H : x ∧ y = ? and x ∨ y ∈ F}.

Then we have:

1. R(H, F ) = ⟨R(H, F ),∧,∨, ∗,→, ?,⊤⟩ is a Nelson lattice, when the opera-
tions are defined as follows:

• (x, y) ∨ (s, t) = (x ∨ s, y ∧ t),
• (x, y) ∧ (s, t) = (x ∧ s, y ∨ t),
• (x, y) ∗ (s, t) = (x ∧ s, (x ⇀ t) ∧ (s ⇀ y)),
• (x, y)→ (s, t) = ((x ⇀ s) ∧ (t ⇀ y), x ∧ t),
• ⊤ = (⊤, ?), ? = (?,⊤).

2. ¬(x, y) = (y, x),

3. Given a Nelson lattice A, there is a Heyting algebra HA, unique up to iso-
morphisms, and a unique Boolean filter FA of HA such that A is isomorphic
to R(HA, FA).

Remark 1. Let A be a Nelson lattice. Let us consider H = {a2 : a ∈ A} with
the operations a ⋆∗ b = (a ⋆ b)2 for every binary operation ⋆ ∈ A. Then,

H∗
A = ⟨H,∨∗,∧∗,→∗, 0, 1⟩

is a Heyting algebra ([6]).

Now, for our aim, we need to introduce some definitions of modal algebras.
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Definition 2. A modal Heyting algebra MH is an algebra ⟨H, ,3⟩ such that
the reduct H is an Heyting algebra, and 3 are two binary operators and, for
all x, y ∈ H,

x ∧3(−x ∧ y) = ? (0.1)

Modal Heyting algebras obviously form a variety but it is not very well known.
However, there is well known extension of this that is called normal modal Heyting
algebra. It is obtaned by including the following equations:

3. −3x = − x,

4. (x ⇀ y) ⇀ ( x ⇀ y) = ⊤,

5. ⊤ = ⊤.

Note that (1) implies that x∧3− x = ? and − x∧3x = ?, therefore, we can
conclude 3−x ⩽ − x and −x ⩽ −3x. In addition, if (5) is assumed, we have
3? = ?.

Definition 3. A modal N3-lattice (for short MN3-lattice) is an algebra ⟨A,■,♦⟩
such that the reduct A is an N3-lattice and, for all a, b ∈ A,

1. ♦a = ¬■¬a,

2. (■a)2 = (■a2)2 and (♦a)2 = (♦a2)2,

3. (■a ∧ ♦(¬a2 ∧ b))2 = ?.

In addition, A is said to be regular if it satifies the following:

4. ■(a ∧ b) = ■a ∧■b.

Moreover, if A is a regular modal N3-lattice (for short RMN3-lattice) by using
(1) and (4), we can conclude:

4′. ♦(a ∨ b) = ♦a ∨ ♦b.

Finally, we say that a modal Nelson lattice is normal if it is regular and, in
addition, satisfies:

5. ■⊤ = ⊤.

In this case, we can reproduce the following classical result on RMN3-lattices:

Lemma 1. If A is a regular modal N3-lattice then it satisfies the next monotony
properties:
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if a2 ⩽ b then (■a)2 ⩽ ■b, and if (¬a)2 ⩽ ¬b then (¬■a)2 ⩽ ¬■b.

Now we are ready to formulate the first result of this work.

Theorem 2. Let H and F be a modal Heyting algebra as defined in 2 and a
Boolean filter satisfying:

if x ∧ y = ? and x ∨ y ∈ F then x ∨3y ∈ F.

Then, R(H, F ) = ⟨R(H, F ),∧,∨, ∗,→, ?,⊤,■,♦⟩ is a Modal Nelson lattice,
where the operators ■,♦ are defined as follows:

■(x, y) = ( x,3y), and ♦(x, y) = (3x, y).

Now, we are going to extend the representation of Nelson lattices in terms of Heyt-
ing algebras from Theorem 1 to the modal context. First, we need to introduce
the next result.

Lemma 2. Let A be a MN3-lattice. Consider H∗
A = ⟨H,∨∗,∧∗,→∗, ?,⊤, ∗,3∗⟩

with H = {a2 : a ∈ A} and operators ∨∗,∧∗,→∗ as in Remark 1 and modal
operators as follows

∗a = (■a)2, and 3∗a = (♦a)2

for every a ∈ H. Then H∗
A is a modal Heyting algebra. In addition, if we take

F = {(a ∨ ¬a)2 : a ∈ A}, then F is a Boolean filter satisfying

if a ∨∗ b ∈ F and a ∧∗ b = ? then ∗a ∨∗ 3∗b ∈ F

for every a, b ∈ H.

A direct consequence of previous Lemma is our main result:

Theorem 3. Let A be a modal N3-lattice. Then A is isomorphic to R(H∗
A, F )

as defined in Theorem 1 by taking F as in the previous lemma.

Now, we would like to finish our presentation by considering two interesting sub-
variaties of Modal Nelson lattices. First, we consider the modal extension of
the subvariety of Nelson lattices, introduced in [3] which is characterized by the
following equation:

¬a2 → a2 = (¬a→ a)2 (0.2)
We denote this modal subvariety by MN N . Let us consider a modal Heyting
algebra ⟨H, ,3⟩ such that for all x ∈ H the following conditions hold:

1. −− x = −3− x, 2. − − x = −−3x.

Then, we are able to prove the following result.
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Theorem 4. A modal Nelson lattice ⟨A,■,♦⟩ satisfies Equation (0.2) if and only
if there is a modal Heyting algebra ⟨H, ,3⟩ that satisfies conditions 1. and 2. such
that ⟨A,■,♦⟩ is isomorphic to R(H, D(H)).

Now, we are going to extend the notion of φ-regular algebra to the modal context.
The subvariety of Nelson lattices called φ-regular Nelson lattices were studied in
[1] which is characterized by:

(¬a2)2 ∨ (¬(¬a2)2)2 = ⊤ (0.3)

We are going to say that ⟨A,■,♦⟩ is a modal φ-regular Nelson algebra if the
non-modal reduct of A is φ-regular algebra where for any a ∈ A the unary term
φ(a) = (¬(¬a)2)2 ∧ (¬(¬(a ∨ ¬a)2)2 ∨ a) satisfies:

■φ(a) = φ(■a),

Definition 4. A modal Heyting algebra ⟨H, ,3⟩ is said to be crisp-witnessed if
it satisfies the equations

−− x = −−x and −−3x = 3−−x (0.4)

for every x ∈ H.

Thus, we are able to prove the following result.

Theorem 5. A modal Nelson lattice ⟨A,■,♦⟩ is a modal φ-regular Nelson lattice
if and only if the associated Heyting algebra ⟨HA, ,3⟩ is crisp-witnessed and
satisfies the Stone identity −x ∨ −− x = ⊤.
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A lattice-ordered pregroup (ℓ-pregroup) is an algebra (L,∧,∨, ·, ℓ, r, 1) such that
(L,∧,∨) is a lattice, (L, ·, 1) is a monoid, multiplication preserves the lattice order
⩽ and for every a ∈ L,

aℓa ⩽ 1 ⩽ aaℓ and aar ⩽ 1 ⩽ ara.

Lattice-ordered pregroups can be seen as a generalization of lattice-ordered groups
(ℓ-groups) which have been extensively studied [1, 4, 9]. Indeed, ℓ-groups corre-
spond exactly to the ℓ-pregroups that satisfy xℓ ≈ xr and in this case xℓ is the
group inverse operation. On the other hand ℓ-pregroups are a special case of pre-
groups defined similarly to ℓ-pregroups but without demanding that its underlying
order is a lattice. Pregroups where introduced in the context of mathematical lin-
guistics [2, 3, 10]. Moreover, ℓ-pregroups are exactly the residuated lattices that
satisfy (xy)ℓ ≈ yℓxℓ and xrℓ ≈ x ≈ xℓr, where xℓ := x\1 and xr := 1/x. So the
methods developed for residuated lattices and their connection to substructural
logics (see e.g., [8]) also apply to ℓ-pregroups.
An ℓ-pregroup is called distributive if its lattice reduct is distributive. The variety
DLP of distributive ℓ-pregroups was studied in depth in [5] where a Holland-style
representation theorem is obtained and shown that DLP has a decidable equational
theory.
In this work we will restrict ourselves to periodic ℓ-pregroups. An ℓ-pregroup is
called n-periodic for n ∈ N if it satisfies the equation xℓ

n ≈ xr
n . As noted above,

1-preiodic ℓ-pregroups correspond exactly to ℓ-groups. We denote the variety of
n-periodic ℓ-pregroups by LPn. In [7] it was shown that every periodic ℓ-pregroup
is distributive. Moreover, in [6] a representation theorem for periodic ℓ-pregroups
is obtained and it is shown that the equational theory of LPn is decidable for each
n ∈ N.
Let f : P→ Q and g : Q→ P be maps between posets. We say that g is a residual
for f and f is a dual residual for g if for all p ∈ P , q ∈ Q,

f(p) ⩽ q ⇐⇒ p ⩽ g(q).

The residual and dual residual of a map f are unique if they exist and we denote
them by f r and f ℓ, respectively. Inductively, we define the nth-order residual if
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it exists, by f r1 = f r and f rn+1 = (f rn)r and analogously we define the nth-order
dual residual of f .
For a chain Ω we denote by F (Ω) the set of maps on Ω that have residuals and dual
residuals of every order. This set gives rise to a distributive ℓ-pregroup F(Ω) =
(F (Ω),∧,∨, ◦, ℓ, r, idΩ), where ∧ and ∨ are defined point-wise, ◦ is functional
composition, and idΩ is the identity map on Ω. In [5] it was shown that F(Z)
generates DLP. The subset Fn(Ω) of F(Ω) of the maps that satisfy f r

ℓ = f r
n

forms an n-periodic subalgebra Fn(Ω) of F(Ω). In contrast to the result about
DLP it was shown in [6] that Fn(Z) does not generate LPn for any n ∈ N, but
LPn is generated by Fn(Q−→×Z) for every n ∈ N. Nevertheless it was shown that
the variety V(Fn(Z)) is decidable and that ∨n∈N LPn = ∨

n∈N V(Fn(Z)) = DLP,
yielding two different ways of approximating DLP with varieties of periodic ℓ-
pregroups. A problem left open in [6] is whether the variety V(Fn(Z)) is finitely
axiomatizable. In this work we show that V(Fn(Z)) is axiomatized relative to LPn
by a single equation. Let us define x[k] = xℓ

2k and σn = x ∧ x[1] ∧ · · · ∧ x[n−1]. For
an n-periodic ℓ-pregroup L and a ∈ L the element σn(a) is exactly the minimal
invertible element above a. Our main result can now be stated:

Theorem 1. For each n the variety V(Fn(Z)) is axiomatized relative to LPn by
the equation xσn(y)n ≈ σn(y)nx.

The theorem is proved in three steps. First we connect the congruence lattice of
n-periodic ℓ-pregroups to the congruence lattice of their subalgebra of invertible
elements which we call the group skeleton. In fact the group skeleton is exactly the
image of the term operation σn. Then, using a decomposition theorem for periodic
ℓ-pregroup of [6], we characterize the finitely generated subdirectly irreducible n-
periodic ℓ-pregroups that satisfy xσn(y)n ≈ σn(y)nx as lexicographic products of a
totally ordered abelian group and Fk(Z), where k devides n. Finally we show that
all of these finitely generated subdirectly irreducibles are contained in V(Fn(Z)).
In particular, on the way we obtain the following characterizations of (finitely)
subdirectly irreducible members of V(Fn(Z)).

Corollary 1. The finitely generated subdirectly irreducible members of V(Fn(Z))
are exactly the lexicographic producs of a finitely generated totally ordered abelian
group and Fk(Z) for some k that devides n.

Corollary 2. The finitely subdirectly irreducible members of V(Fn(Z)) are exactly
the n-periodic ℓ-pregroups whose group skeleton is a totally ordered abelian group.
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Introduction

Markov networks, also known as Markov random fields, are a class of probabilistic
graphical models that represent the dependencies between random variables using
an undirected graph [4, 5]. Markov networks provide a compact representation of
high-dimensional probability distributions, coupled with efficient inference algo-
rithms and a clear visual representation. Unlike directed graphical models, such
as Bayesian networks, Markov networks are useful for modeling phenomena where
directionality cannot be naturally imposed on the relationships between random
variables. Markov networks have found widespread application in fields as diverse
as image analysis, natural language processing, bioinformatics, and social network
analysis.
We argue that certain fuzzy logics related to Hájek’s probabilistic logics [3] pro-
vide a compact specification language for Markov networks. Such a specification
language is suitable for formalizing and facilitating reasoning about input from
domain experts, which is often essential in practice for building a probabilistic
model. In addition, we show that adopting the fuzzy logic perspective clarifies
some conceptual issues in the foundations of Markov networks.

Markov networks

Recall that a random variable is a function from a set Ω (the sample space)
to a set Val (values). A random variable V is discrete if Val(V ) is finite or
countably infinite and V is Boolean if Val(V ) = {0, 1}. If X = (X1, . . . , Xn) is a
tuple of random variables, then Val(X) is the set of tuples x = (x1, . . . , xn) where
xi ∈ Val(Xi).

Definition 1. A Markov network is a pairN = (X,F ) whereX = (X1, . . . , Xn)
is a tuple of random variables and F = (φ1, . . . , φm) is a tuple of factors over
X, that is, pairs φi = (X{i}, pi) where X{i} is a sub-tuple of X (the scope of φi)
and pi : Val(X{i}) −→ R+ (the potential function). We use the notation x{i} for
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elements of Val(X{i}). Tuples x = (x1, . . . , xn) where xi ∈ Val(Xi) are states of
the network.

A network N = (X,F ) can be represented as an undirected graph with vertices
X and an edge connecting Xi and Xj iff there is φ ∈ F such that Xi, Xj are in
the scope of φ.

Example 5. Let X = (X1, X2, X3) be Boolean and let F = (φ1, φ2) be specified
as follows: X{1} = (X1, X2), X{2} = (X2, X3) and

X1

X2

X3
X1 X2 p1
1 1 2
1 0 0
0 1, 0 0.5

X2 X3 p2
1 1 0.2
v2 v3 1.2
0 0 0.5

where

v2 + v3 = 1.

The factor φ1 represents an implication X1 → X2 which prefers states where it is
satisfied non-vacuously: states where X1 is true and X2 false are ruled out (have
value 0), states where X1 and X2 are both true have value 2, and states where X1
is false have lower value 0.5. The factor φ2 represent a soft exclusive or statement
where states not satisfying the statement Boolean statement X2⊕X3 are not ruled
out, just given lower values. Note that states where both X2 and X3 are false are
given a slightly lower value (0.2) than states where both are true (0.5).

There is a close relationship between Markov networks and valued constraint satis-
faction problems [7]. Intuitively, factors correspond to valued constraints on states.
However, factors play different roles in VCSP and MN, respectively. While VCSP
aims at finding the optimal states, the primary role of a Markov network is to
provide a compact representation of a probability distribution over states. We
focus on networks of finitely discrete random variables.

Definition 2. In N = (X = (X1, . . . , Xn), F = (φ1, . . . , φm)), we define:

Weight of x ∈ Val(X) Normalising constant of N Probability of x ∈ Val(X)

WN(x) =
m∏
i=1

φi(x{i}) ZN =
∑

x∈Val(X)
W (x) PN(x) = WN(x) · Z−1

N

Probability of events E ⊆ Val(X) is defined as PN(E) = ∑
x∈E PN(x) and condi-

tional probability is defined as expected.

Example 6. The weight of state (1, 1, 0) in the network of Example 5 is φ1(1, 1)×
φ2(1, 0) = 2× 1.2 = 2.4. The normalising constant of the network is 4.35 and the
probability of state (1, 1, 0) is approximately 0.55. The probability of the event
X1 = 1 is approximately 0.64.
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Graded Markov networks

Interpreting the numerical values of factors in Markov networks is a recognised
challenge; see, for example, [5, pp. 107–108], [4, p. 106] and [1, p. 269]. Inspired
by the connection between Markov networks and valued constraint satisfaction
problems, we observe that this problem is mitigated within a particular class of
Markov networks.

Definition 3. A Markov network N = (X,F ) is graded if φi(x{i}) ∈ [0, 1] for
all φi ∈ F .

We say that two Markov networks N = (X,F ) and N ′ = (X,F ′) are equivalent
iff P (x) = P ′(x) for all x ∈ Val(X).

Theorem 1. Each discrete Markov network is equivalent to a graded Markov
network.

Proof. It is sufficient to choose a ‘big number’ B such that B ⩾ φi(x{i}) for all
x ∈ Val(X) and φi ∈ F , and then define φ′

i(x{i}) =df φi(x{i}) ·B−1.

In graded networks, φi(x{i}) can be seen as the result of evaluating, on the arbi-
trarily fine scale [0, 1], two aspects of the interaction between a state x and a soft
constraint φi: (i) how well, or to what degree, does x satisfy the constraint φi;
and (ii) how important is the constraint φi? Human users are quite accustomed
to scaled assessments (think of film ratings, satisfaction questionnaires, etc.), and
so we propose that graded Markov networks provide a format particularly suited
to human input.

Example 7. Consider the network in Example 5 and set B = 2, the maximal
value of a potential function of the network. Then φ′

1 = (1, 0, 0.25, 0.25) and
φ′

2 = (0.1, 0.6, 0.6, 0.25). The fact that φ′
2(1, 0) = 0.6 cannot be interpreted to

mean that the salient constraint (exclusive or) is satisfied to degree 0.6 in states
where X2 is true and X3 is false. The constraint is fully satisfied, it’s just that
it’s considered less important than φ′

1. If necessary, we can explicitly state the
importance degrees of the constraints, e.g. 1 for φ′

1 and 0.6 for φ′
2.

In addition, using [0, 1] instead of R+ (or even R+∞) enables a better grasp on
the relative sizes of degrees. Indeed, while all closed intervals of real numbers are
homeomorphic, in [0, 1] we have a fixed standard arithmetics that allows e.g. to
see the number 0.5 as the middle point of the interval in a canonical way, whereas
the exact location of the middle point of R+∞ would actually depend on what
particular homeomorphism one uses to map it back to [0, 1].
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Symbolic representation I

In what follows, we focus on graded Boolean networks (GB), that is, graded
Markov networks where all random variables are Boolean. GB networks have a
straightforward symbolic representation in terms of weighted Boolean theories,
that is, tuples of pairs ((α1, w1), . . . , (αr, wr)), where αi is a Boolean formula and
wi ∈ [0, 1] for all i = 1, . . . , r. Starting with a GB network N = (X,F ), each factor
φi ∈ F over Boolean variables Xj for j ∈ Ji corresponds to Ti = ((αj, wj) for j ∈
Ji) where each αj is a Boolean formula over X representing one value assignment
to Boolean variables in the scope of φi and wj is the value of φi under that
assignment. The weighted theory TN is just a concatenation of the tuples Ti for
φi ∈ F .

Example 8. The network of Example 7 corresponds to the concatenation of
(
(X1 ∧X2, 1), (X1 ∧ ¬X2, 0),

(¬X1 ∧X2, 0.25), (¬X1 ∧ ¬X2, 0.25)
) and(

(X2 ∧X3, 0.1), (X2 ∧ ¬X3, 0.6),
(¬X2 ∧X3, 0.6), (¬X2 ∧ ¬X3, 0.25)

)
The weighted theory can be simplified by leaving out formulas with weight 1 and
forming disjunctions of mutually inconsistent formulas with the same weight:
(
(X1∧¬X2, 0), (¬X1, 0.25), (X2∧X3, 0.1), (X2 ↔ ¬X3, 0.6), (¬X2∧¬X3, 0.25)

)
.

Conversely, every weighted theory T = ((αj, wj) for j ∈ J) can be converted into
a GB network NT = (XT , FT ) where XT is the tuple of all propositional variables
appearing in αj for j ∈ J and F = (φj for j ∈ J) such that the scope of φj are
the variables appearing in αj and φj(x{j}) = wj if αj is satisfied in x and = 1
otherwise, for all j ∈ J . Hence, every formula is considered as a separate factor.
The symbolic representation of Markov networks in terms of weighted theories
is the key idea behind Markov Logic Networks [2, 6]. In this case, however, the
formulas are of first-order logic, not propositional logic. The idea, however, is
quite general and can be applied to various other languages, for example variants
of modal logics.

Symbolic representation II

A similar symbolic representation can be set up using a variant of the two-layered
fuzzy logic of probability by Hájek et al. [3]. The set of formulas Fm is defined by

φ, ψ := Xi | 0̄ | φ→ ψ | φ⊙ ψ | F(α) | PT (α) ,
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where α does not contain F nor P (it is a Boolean formula over the set of variables
Pr = {Xi | i ∈ N}) and T is a finite set of Boolean formulas. Other connectives
are defined as usual. A model is M = (S, f, V ), where S is a non-empty countable
set, V : Pr −→ 2S and f : 2S −→ [0, 1]. An M -interpretation is a function J·K : S×
Fm −→ [0, 1] such that (let ∥φ∥ = {s | JφKs = 1})

JXiKs =
1 if s ∈ V (Xi)

0 otherwise
J0̄Ks = 0 Jφ⊙ ψKs = JφKs · JψKs

Jφ→ ψKs = min{1, 1− JφKs + JψKs} JF(α)Ks = f∥α∥
JPT (α)Ks = ∑

s∈∥α∥ Prob(s),

(ProbT (s) = WeightT (s) · Z−1
T , WeightT (s) = ∏

α∈T Jα → F(α)Ks and ZT =∑
s∈S WeightT (s)).

A finite set T of Boolean formulas is a template, expressing the structure
of a Boolean graded network. Given a model and a template T , the tuple
((α, f∥α∥) for α ∈ T ) gives rise to a weighted-theory representation of a specific
network with template T . Formulas F(α) represent parameters of the network
with values JF(α)K (note that these do not depend on s ∈ S).
In practice, parameter values can often be provided by domain experts or learned
from data. Often, a combination of these two approaches is the most efficient
strategy to obtain a network that approximates a probability distribution: a do-
main expert provides information about the network without fully specifying it,
and the rest is learned from data, with the hypothesis space constrained by the
expert input. In our view, fuzzy logic provides a compact specification language
for such expert input.

Example 9. Formula F(α1)→ F(α2) says that (has truth degree 1 iff) the value
of parameter F(α1) is less or equal than the value of the parameter F(α2). If we
extend the language with constants c̄ for c ∈ [0, 1] ∩Q, then we can express that
a given parameter is less (greater) or equal to c by formulas of the form F(α)→ c̄
(resp. c̄ → F(α)). Similarly, PT (α) → PT ′(α) means that the probability of α
in any network with structure T is less or equal to the probability of α in any
network with structure T ′.

Finding a complete axiomatization and determining decidability of our logic are
natural open problems.
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Basic terminology in homological category theory

We briefly recall the following key concepts. We refer the interested reader to
[2, 3] for a comprehensive account.
A category is pointed if it has a zero-object, that is, an object 0 that is both
terminal and initial. In a pointed category, a kernel of a map p : A → B is the
pullback of the initial map 0→ B along p.

Kerar[r]ar[d] Aar[d]p

0ar[r] B

More generally, a kernel pair of p is the pullback of p with itself. An (internal)
equivalence relation is called effective when it is the kernel pair of a morphism.
A category B is regular, if it is finitely complete, has pullback-stable regular epi-
morphisms, and all effective equivalence relations admit coequalizers. A regular
category is Barr-exact [1] when all equivalence relations are effective.
We will also need the concept of protomodularity whose technical definition goes
beyond the scope of this abstract. Intuitively, a category is called protomodular
if it possesses an intrinsic notion of normal subobject —in analogy with normal
subgroups. The notion of protomodular (and semi-abelian) category encompasses
a wide range of categories of interest to algebraists, including categories of groups,
rings, Lie algebras, associative algebras, and cocommutative Hopf algebras, among
others. Of course, all abelian categories are semi-abelian. We refer the reader to
[4] for the original definition and to [5] for a more general account.
A category is called homological if it is pointed, regular and protomodular. Many
of the standard results of classical homological algebra hold in homological cate-
gories.
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Finally, a category is semi-abelian if it is homological, Barr-exact, and has finite
coproducts.

Introduction

In the algebraic semantics of non-classical logics, often there are two constants
in the language, one for absolute truth and one for absolute falsehood. As a
consequence, the final object (=the trivial algebra) is different from the initial
one (=the ∅-generated free algebra). This makes the categories at play non-
pointed and thus apparently intractable with homological methods. We report on
the article [9], which aims at showing that one may still connect the equivalent
algebraic semantics of non-classical logics to homological categories. The idea is
best explained by the following example from classical algebra.
The forgetful functor

U : CRing→ CRng ,

from the protomodular category of commutative unital rings to the semi-abelian
category of commutative rings has a left adjoint F that freely adds the multi-
plicative identity. In greater detail, if R is a commutative ring, then F (R) has
underlying abelian group given by the direct product R × Z, endowed with a
multiplication defined by the formula

(r, n)(r′, n′) := (rn′ + nr′ + rr′, nn′) (0.1)

and with multiplicative identity (0, 1). It is easy to see that the ring R is contained
in F (R) as an ideal. By the arbitrary choice of R, this means that every commu-
tative ring can be seen as an ideal of a suitable unital commutative ring. More
precisely, one can prove that there is an equivalence of categories CRing/Z ≃ CRng
which is defined by taking kernels in CRng of the “objects” in the slice category.
Now, it is well known that ideals of commutative unital rings make it easier to
deal with congruences (and quotients) in CRing, but since they are not subobjects
in CRing, it is not immediate to describe them categorically. On the other hand,
ideals of commutative unital rings are subobjects in CRng. This makes it possible
to exploit the categorical properties of the semi-abelian category CRng in order
to study the, still protomodular but not pointed, category CRing.

U-ideals and the basic setting

We propose to set a study of these facts in a more general framework. As a
first step, we introduce the notion of U-ideal. Let A be a pointed category with
pullbacks and U : B→ A be a faithful functor. Intuitively, a U -ideal is a kernel in
A of a map that lives in B. A formal definition follows.
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Definition 1. Let B be an object in B. A morphism k : A→ U(B) in A is called
U-ideal of B if there exists a morphism f : B → B′ of B that makes the following
diagram a pullback in A:

Aar[r]−kar[d] U(B)ar[d]U(f)

0ar[r] U(B′)

Since kernels are monomorphisms, U -ideals can be seen as subobjects in a “larger”
category. Prototypical examples of U -ideals come from the inclusion U : Ring →
Rng of unital rings into rings: U -ideals in Ring are just the usual bilateral ideals
of ring theory.
The example from ring theory suggests considering a more robust environment
for dealing with the notion of U -ideal.

Definition 2. A basic setting for relative U -ideals is an adjunction

Bar[r]−U Aar@/3ex/[l]?F , (0.2)

where the category A is homological and U is a conservative faithful functor.

We develop these ideas below. Our main results are the following. An equivalence,
in the varietal settings, between relative U -ideals and Ursini’s 0-ideals [7] (see
Theorem 2). In Section we describe a more general equivalence (Theorem 3)
and then we apply it to the case of MV-algebras, showing an equivalence between
Weisberg hoops and filters of MV-algebras (see Corollary 1). In order to apply our
framework to MV-algebras we show that the category of Hoops is homological (see
Theorem 4), thus showing that our setting applies to a number of non-classical
logics.

U-ideals and varieties of algebras

Let us recall the characterization of protomodular varieties, as established by
Bourn and Janelidze in [6].

Theorem 1. A variety V of universal algebras is protomodular if and only if
there is a natural number n, 0-ary terms e1, . . . , en, binary terms α1, . . . , αn, and
(n+ 1)-ary term θ such that:

V |= θ(α1(x, y), . . . , αn(x, y), y) = x and
V |= αi(x, x) = ei for i = 1, . . . , n .

(0.3)

Let us also recall the following definitions introduced by Ursini (see [7] and refer-
ences therein).
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Definition 3. Let V be a variety with a constant symbol 0 in its signature ΣV. A
ΣV -term t(x1, . . . , xm, y1, . . . , yn) is called 0-ideal term in the variables y1, . . . , yn
if

V |= t(x1, . . . , xm, 0, . . . , 0) = 0 .

For any algebra A in V, a subset ∅ ̸= H ⊆ A is called 0-ideal if for every
a1, . . . , am ∈ A, any h1, . . . , hn ∈ H, and every 0-ideal term t(x1, . . . , xm, y1, . . . , yn)
in the variables y1, . . . , yn, one has t(a1, . . . , am, h1, . . . , hn) ∈ H .

It turns out that in any algebra in V the equivalence class of 0 under any given
congruence is a 0-ideal. Vice versa, one calls 0-ideal determined, or just ideal de-
termined (cf. [7, Definition 1.3]) a variety V where every 0-ideal is the equivalence
class of 0 for a unique congruence relation.
A relevant subclass of the class of ideal determined varieties is the class of the so-
called classically ideal determined. They are the varieties satisfying the conditions
of Theorem 1, with all ei’s equal to a single constant 0 ∈ ΣV.
In order to compare our notion of U -ideal and Ursini’s notion of 0-ideal, we spe-
cialize the basic setting of Definition 2 to the varietal case.
Definition 4. A basic setting for varieties is given by a functor U : B→ A between
two varieties of algebras such that: 1. the axioms of B extend the axioms of A,
possibly in a larger language; 2. the category A is homological (thus semi-abelian);
3. the functor U is the obvious forgetful functor.

Notice that, according to [2, Proposition 3.5.7 and Theorem 3.7.7], U is a faithful
conservative right adjoint, thus satisfies the conditions of Definition 2. Obviously,
if U : B→ A is a basic setting for varieties, then A is classically ideal determined.
The next result establishes a connection between the varietal notion of 0-ideal and
the categorical notion of U -ideal.
Theorem 2. Let U : B → A be a basic setting for varieties. A subset H of an
algebra B of B is a 0-ideal of B if and only if H ⊆ U(B) is a U-ideal of B with
respect to U : B→ A.

Categorical equivalence and non classical logics

Let us go back to the general situation and consider a basic setting as in (0.2).
For every object A of A, the unit of the adjunction η gives a universal morphism
ηA : A→ UF (A). Thus, for any B in B the unique morphism 0: A→ 0→ U(B)
factors through ηA as in the diagram below:

F (A)ar[d] such that
∃!pA

Aar[r]−ηAar[dr]−0 UF (A)ar@−− >[d]U(pA)

B U(B)

(0.4)
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Definition 5. We say that ηA is an augmentation U-ideal, or more simply an
augmentation ideal, if it is the kernel of U(pA).

Theorem 3. Suppose that in the basic setting (0.2) for every A in A, the compo-
nent ηA is an augmentation ideal. Then, the kernel functor

K : B/B → A

defined on objects by letting K(f) := Ker(U(f)), is an equivalence of categories.

Finally, we apply Theorem 3 to the setting of MV-algebras. First, generalising
a proof in [8] we provide terms as requested by Theorem 1, thus obtaining the
following result.

Theorem 4. The variety Hoops is semi-abelian.

Consequently, our setting applies to certain categories of interest in algebraic logic,
such as Wajsberg, Product, and Gödel hoops, with respect to MV, Product and
Gödel algebras. In particular, an application of Theorem 3 gives the following.

Corollary 1. The kernel functor K : MVAlg/2→ WHoops defined by sending an
arbitrary homomorphism f : A → 2 into its kernel Ker(f), is an equivalence of
categories.
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In his seminal paper [5], in regards to the theory of computation, John Mc-
Carthy introduced a logic for computable functions with the aim of managing
undefined assignments, partial predicates, and modeling computational failures.
As the order in which programs are executed may be paramount, the conjunc-
tion/disjunction with an undefined value may fail to commute, and thus yields a
non-commutative logic. This paradigm has also found application in the study of
Process Algebras, such as the handling and management of errors in concurrent
programming; for instance in [1] where the operation · in Figure 1 is used for left
sequential conjunction.
The first algebraic treatment for a 3-valued semantics of McCarthy’s logic was
carried out by Konikowska in [4], where the following operation tables over a set
M3 := {0, 1, ε} are introduced.

′

1 0
0 1
ε ε

+ 1 0 ε
1 1 1 1
0 1 0 ε
ε ε ε ε

· 1 0 ε
1 1 0 ε
0 0 0 0
ε ε ε ε

Figure 1: The operation tables for the algebra M3 := ⟨{0, 1, ε},+, ·, ′, 0, 1⟩.

As Konikowska defines in [4], an algebra ⟨A,+, ·, ′, 0, 1⟩ is called a McCarthy
algebra if it “satisfies all the equational tautologies of a Boolean algebra that hold
in” the algebra M3. From the observation that the two-element Boolean algebra
2 is a subalgebra of M3, we may restate this, within the parlance of universal
algebra, and understand a McCarthy algebra to be any member in the variety
of algebras generated by M3. In this way, let us define M to be the variety of
McCarthy algebras denoting V(M3).
The following properties are readily verified for the algebra M3, and thus also M:
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• the operation ′ is an involution, i.e., x′′ ≈ x, through which the constants
0 ≈ 1′ and 1 ≈ 0′ are inter-definable;

• the operations + and · the term-definable from each other through ′ via
x+ y ≈ (x′ · y′)′ and x · y ≈ (x′ + y′)′, i.e., they satisfy the De Morgan laws;

• the reduct ⟨M3, ·, 1⟩ (thus also ⟨M3,+, 0⟩) is a monoid with an idempotent
operation, i.e., x · x ≈ x (thus also x+ x ≈ x).

Let us call an algebra ⟨A, ·, ′, 1⟩ an unital band with involution (i-uband for short)
if ⟨A, ·, 1⟩ is a unital band (i.e., idempotent monoid) and ′ an involution on A; we
write ⟨A,+, ·, ′, 0, 1⟩ to indicate its term-definable De Morgan dual ⟨A,+, ′, 0⟩ in
the signature.

Theorem 1. There are exactly ten non-isomorphic i-ubands of cardinality 3, ex-
actly four of which containing 2 as a Boolean subalgebra; the Strong Kleene algebra
SK, the Weak Kleene algebra WK, the McCarthy algebra M3 and its mirror Mop

3
(i.e., where x ·op y := y · x).

While a great deal is known about the Strong and Weak Kleene algebras and the
varieties they generate (see e.g. [6, 3, 1]), little is known about the variety M
of McCarthy algebras. In the same article [4], Konikowska gives a long list of
equational identities that are valid for M, but whether this list forms a complete
axiomatization is left open as conjecture. Part of this research settles this question
by both demonstrating that Konikowska’s identities are indeed complete for M,
and also providing a number of equivalent and minimal axiomatizations. We
motivate one such presentation as follows.
For one, the algebra M3 satisfies distributivity from the left:

x ·(y+x) ≈ xy+xz (or, equivalently) x+yz ≈ (x+y) ·(x+z) (left-distributivity)

However, ⟨M3,+, ·⟩ is not a semiring as distributivity from the right fails in gen-
eral. But some instances of this law do hold, in particular the following:

(x+ x′) · y ≈ xy + x′y (or, equivalently) xx′ + y ≈ (x+ y) · (x′ + y)
(ortho-distributivity)

Of course, the most glaring identity that fails in M3 is that of commutativity. Thus
the monoid reduct fails to form a semi-lattice. Even worse, ⟨M3,+, ·⟩ is not even
a skew-lattice, as the right-absorption laws are falsified (e.g., 1 ̸= (ε+ 1) · 1 = ε).
However, M3 does satisfy the following left-absorption law:

x · (x+ y) ≈ x (or, equivalently) x+ xy ≈ x (left-absorption)

While M3 is not ortho-complemented, i.e., the identity 1 ≈ x + x′ (equivalently,
0 ≈ x·x′) fails, it does satisfy a local version with unary term-operations 0x := x·0
and 1x := x+ 1:

1x ≈ x+ x′ (or, equivalently) 0x ≈ x · x′ (locally complemented)
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Lastly, while commutativity generally fails, it does satisfy some instances. In
particular for the local units 1x := x+ 1 and 0x := x · 0:

1x · 1y ≈ 1x · 1y (or, equivalently) 0x + 0y ≈ 0x + 0y (local-unit commutativity)
Definition 1. We call a McCarthy-Konikowska algebra (MK-algebra) any i-
uband satisfying left-distributivity, ortho-distributivity, left-absorption, locally
complemented, and local-unit commutativity. Denote the variety of MK-algebras
by MK.

With a good deal of work, we verify the following:
Theorem 2. Konikowska’s axioms [4, (A1–A16) pp. 169] hold in MK.

Among these identities sits that of left-regularity, i.e., xyx ≈ xy. In fact, and while
the derivation is far from trivial, any left-distributive i-uband satisfying local-unit
commutativity is also left-regular. As is well-known, any left-regular operation
∗ admits a partial order ⩽∗ defined via x ⩽∗ y iff x ∗ y = y. For MK-algebras,
we choose to work with the partial order associated with the operation +, and
will denote it simply by ⩽. This fact affords us the following structure theorem
for MK-algebras. First, recall the standard notation ↑a := {x ∈ A : a ⩽ x} and
↓b := {x ∈ A : x ⩽ b}, and that of an interval [a, b] := ↑a ∩ ↓b.
Theorem 3. Let A = ⟨A,+, ·, ′, 0, 1⟩ be an MK-algebra. Define IA := {0a : a ∈
A} and, for each i ∈ IA, set Bi := [0i, 1i], where 0x := x · 0 and 1x := x + 1.
Then the following hold:

1. ⟨IA,∨, 0⟩ is a join-semilattice with least element 0, where i ∨ j := i+ j.

2. For each i ∈ IA, Ai := ⟨↑0i,+, ·, ′, 0i, 1i⟩ is an MK-algebra and the map
hi : x 7→ 0i + x is a homomorphism from A onto Ai.

3. For each i ∈ IA, the structure Bi := ⟨Bi,+, ·, ′, 0i, 1i⟩ is a Boolean algebra
and the set Bi coincides with {x ∈ A : 0x = 0i}. Consequently, A = ⋃

i∈IA Bi

and the members of {Bi}i∈IA are pairwise disjoint.

4. For each i, j ∈ IA with i ⩽ j, the map ρij := hi↾Bi is a homomorphism
from Bi to Bj. Moreover, ρii = idBi

and ρjk ◦ ρik = ρik for each i ⩽ j ⩽ k
in IA.

This structure theorem allows for a finer analysis of MK-algebras, in particular
those that are subdirectly irreducible, and ultimately serves as the linchpin for
the following characterization.
Theorem 4. The only subdirectly irreducible MK-algebras are the two-element
Boolean algebra 2 and the 3-element MK-algebra M3.

As every variety of algebras is generated by its subdirectly irreducible members,
and 2 is a subalgebra of M3, we immediately obtain the following as a corollary
to Theorem 4.
Corollary 1. The variety of MK-algebras is generated by the algebra M3. Con-
sequently, the variety of McCarthy algebras coincides with MK.
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Introduction

We study the cardinalities of intervals of modal and superintuitionistic logics (si-
logics for short). This cardinality cannot be more than the continuum as we
assume that our language is countable, and in a countable language we cannot
have more than a continuum of logics (which are special sets of formulas). Recall
that for modal or si-logics L1 and L2 the interval [L1, L2] is the set

[L1, L2] = {L : L1 ⊆ L ⊆ L2}.

These intervals are, clearly, not linearly ordered.
It was first shown by Jankov [6] that there are continuum many si-logics. There-
fore, the intervals [IPC, Inconsist] and [IPC,CPC], where IPC and CPC are intuition-
istic and classical propositional calculi, respectfully, and Inconsist is the inconsis-
tent logic, have the cardinalities that of the continuum. This was obtained by
constructing an antichain of finite subdirectly irreducible Heyitng algebras (alter-
natively, finite rooted posets) with respect to homomorphic image of a subalgebra
order (alternatively, p-morphic image of an upset) and by associating to each
such finite algebra the so-called Jankov formula, a variant of the diagram of this
algebra [6], see also [1]. These results have been generalized to modal logics by
Fine [4] and Rautenberg [8] (see [3, Chapter 9] for an overview). For example, the
intervals [S4, Inconsist] and [K4, S4] have the cardinality that of the continuum.
It is also known that there are some intervals that are finite, e.g., extensions of
any tabular transitive modal or si-logic and countably infinite, e.g, the intervals
[S4.3, Inconsist] or [LC, Inconsist] (see e.g., [3]).
It was posed as an open problem, only very recently in [5], whether it can be
proved without assuming the Continuum Hypothesis (CH) that each interval of
modal logics has the cardinality which is countable or that of the continuum. In
particular, suppose that for modal or si-logics L1 and L2, the interval [L1, L2]
is not countable, then is the cardinality of this interval that of the continuum,
without the use of the CH? This question was triggered by investigations into the
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degrees of the finite model property (the FMP). This concept was defined in [5]
and it was shown that the degree of the FMP of each transitive modal or si-logic
can be any finite cardinal, ℵ0 or 2ℵ0 . With the CH this implies that any cardinality
⩽ 2ℵ0 can be the degree of the FMP for some transitive modal or si-logic. Because
of this, this result was called the Antidichotomy theorem. It was also shown in
[5] that the degrees of the FMP for these logics always form an interval.
In this paper, we resolve this open problem affirmatively. We prove this by using
techniques from descriptive set theory (see e.g., [7, Section 12]). Specifically, we
represent the set of propositional variables as natural numbers and logics as reals.
Then sets of logics correspond to some sets of real numbers. We show that for any
interval of modal or si-logics the corresponding set of reals is Π0

1, in particular,
it is a Borel set. It is a classical result in descriptive set theory that every Borel
set has the perfect set property [7]. Thus, the cardinality of such a set is either
countable or continuum. As a result, we obtain that every uncountable interval
of logics has the cardinality that of the continuum, and the degree of FMP of any
transitive modal logic or si-logic can be only any finite cardinal, ℵ0 or 2ℵ0 without
assuming the CH. This gives the solution to our problem. We also provide a direct
proof showing that the degree of FMP in the lattice of normal extensions of any
normal modal logic is Π0

2, so the cardinality result also holds for non-transitive
modal logics.
As far as we are aware, this perspective on the study of intervals of logics has not
been explored before.

Main results and proof sketches

We will now move to formal details.

Definition 1. Let L0 be a normal modal logic.

1. Let NExtL0 be the lattice consisting of all normal extensions of L0, namely
all normal logics containing L0, with the order ⊆.

2. Given L1 ∈ NExtL0, let

[L0, L1] = {L normal logic : L0 ⊆ L ⊆ L1} = {L ∈ NExtL0 : L ⊆ L1}.

3. Let FFr be the set of all finite Kripke frames. For L ∈ NExtL0, let FFr(L) =
{F ∈ FFr : F ⊨ L}, and fmpL0(L) = {L′ ∈ NExtL0 : FFr(L′) = FFr(L)}.

4. The degree of fmp of L in NExtL0 is the cardinality of the set fmpL0(L).

Remark 1. These definitions also apply to si-logics.

Our central observation is that we can identify formulas with natural numbers,
logics (which are sets of formulas) with real numbers, and intervals (which are
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sets of logics) with sets of reals. Since there are countably many proportional
variables, we can encode modal formulas in an effective way, that is, Fml = {i ∈
ω : i is a code of a modal formula} is recursive. φi will denote the formula with
code i. Similarly, given some A ⊆ Fml, let LA = {φi : i ∈ A}. Note that every
formula has a unique code and every logic has a unique set of codes. Explicitly,
we have i ∈ Fml and φi ∈ L iff i ∈ A, for all i ∈ ω. We further identify subsets
of ω with reals, namely, elements in the Cantor space 2ω in the canonical way.
Under this identification, in particular, logics correspond to elements of 2ω, and
sets of logics to subsets of 2ω.
This allows us to investigate the arithmetical and Borel complexity of sets of
logics, viewed as sets of reals, and apply facts from descriptive set theory (see
e.g., [7, Section 12]).

Definition 2. Let f, g ∈ 2ω. f ⊕ g ∈ 2ω is defined by

(f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n+ 1) = g(n), for all n ∈ ω.

Lemma 1. Let L1 ∈ NExtL0 and A1 ⊆ Fml be the code of L1. Let [A0, A1] =
{A ⊆ Fml : LA ∈ [L0, L1]}. Then [A0, A1] ∈ Π0

1(A0 ⊕ A1). Moreover, if L0 is
recursively axiomatizable and L1 is decidable, then [A0, A1] ∈ Π0

1.

Proof Idea. The set [A0, A1] ⊆ 2ω can be defined by a Π0
1 formula with parameters

A0, A1. For example, for A ⊆ Fml, being closed under necessitation is character-
ized by ∀i∀j(Nec(i, j) ∧ j ∈ A → i ∈ A), where Nec(x, y) is a recursive relation
such that Nec(i, j) iff i, j ∈ Fml and φi is of the form φj; being an extension of
A0 is characterized by ∀i(i ∈ A0 → i ∈ A).
If L0 is recursively axiomatizable, then A0 is recursively enumerable, so there is
some recursive R such that A0 = {i ∈ ω : ∃jR(i, j)}. Then, in the defining
formula, i ∈ A0 can be replaced by ∃jR(i, j). Similarly, if L1 is decidable, i ∈ A1
can be replaced by a recursive predicate R′(i). These changes keep the formula
Π0

1 and eliminate the parameters.

Thus, for any interval of modal or si-logics, the corresponding set of reals is Π0
1,

in particular, it is a Borel set. It is a classical result in descriptive set theory that
every Borel set has the perfect set property [7]. It follows that the cardinality of
such a set is either countable or that of the continuum. As a result, we obtain the
main theorem.

Theorem 1. Let L1 ∈ NExtL0 and A1 ⊆ Fml be the code of L1. Then [L0, L1]
has the cardinality either countable or that of the continuum.

The theorem applies to si-logics with straightforwardly adjusted proofs. The next
corollary follows from the fact that fmpL0(L) always form an interval in transitive
modal logics or si-logics, which was shown in [5]. This gives the solution to our
problem.

Corollary 1.
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1. Let L0 be a transitive modal logic, i.e., a normal modal logic containing K4.
Let L ∈ NExtL0. Then fmpL0(L) has the cardinality either countable or that
of the continuum.

2. Let L be a si-logic. Then fmp(L) (in the lattice of si-logics) has the cardi-
nality either countable or that of the continuum.

In addition, we generalize the result to non-transitive modal logic L0 by directly
characterizing the complexity of fmpL0(L).

Lemma 2. Let L ∈ NExtL0 with code A. Let fmpA0(A) = {A′ ⊆ Fml : LA′ ∈
NExtL0,FFr(LA′) = FFr(L)}. Then fmpA0(A) ∈ Π0

2(A0 ⊕A). Moreover, if L0 and
L are recursively axiomatizable, then fmpA0(A) ∈ Π0

2.

Proof Sketch. A finite Kripke frame is a finite set with a binary relation. So,
finite Kripke frames (up to isomorphism) can be coded by natural numbers in an
effective way, such that:

1. The set FFr = {f ∈ ω : f is a code of a finite Kripke frame} is recursive.

2. The validity relation Val(f, i) iff f is the code of a finite Kripke frame F
and i is the code of a formula φ and F ⊨ φ is recursive.

This enables us to define the set fmpA0(A) ⊆ 2ω by a Π0
2 formula with parameters

A0, A.
The second half of the statement follows by a similar argument in the proof of
Lemma 1.

A similar application of the perfect set property of Borel sets gives the next
theorem.

Theorem 2. Let L0 be a normal modal logic. For any L ∈ NExtL0 the set
fmpL0(L) has the cardinality either countable or that of the continuum.

It is worth noting that these proofs do not use any special properties of modal
or si-logics. Thus, this approach can be employed to investigate cardinalities of
sets of other non-classical logical systems (with a reasonably simple syntax and
semantics).
However, not all properties allow such straightforward characterization. A notable
example is the degree of Kripke incompleteness. Although Blok [2] proved that
the degree of Kripke incompleteness in NExtK is either 1 or 2ℵ0 , the situation
in other lattices, such as NExtK4 and NExtS4, remains unknown [3, Problem
10.5]. Given that all Kripke frames form a proper class, it becomes challenging to
reason about Kripke frames using quantifiers over natural numbers or even reals,
in contrast to finite Kripke frames.
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We leave open the question of what implications the characterization within the
Borel hierarchy may have for studying logical properties beyond the cardinality
argument we presented. For example, if a logical property P is shown to be Borel,
analytic, or belongs precisely to some complexity class C, what conclusions can
we draw about that property in relation to logics?
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A term s is a generalization of a term t if t can be obtained from s by variable
substitution. The problem of identifying common generalizations for two or more
terms has been the focus of substantial research, initiated in a series of papers by
Plotkin [7], Popplestone [8], and Reynolds [9], all collected in the same volume
published in 1970. The objective of these initial papers was to formalize an ab-
straction of the process of inductive reasoning. The main idea in this context is
to find the solutions, i.e., the generalizing terms, that are as close as possible to
the initial terms that define the problem. The existence and cardinality of this
set of “best” solutions is encoded in what is called generalization type, which is a
main object of study in this topic.
We provide a novel foundational approach to equational generalization, i.e., where
terms are understood to be equivalent up to an equational theory [4]. The ex-
tension to generalization up to equational theories has been considered by several
authors in theoretical computer science, and there is a growing interest in a gen-
eral, foundational approach (see the recent survey [3]). We observe that relevant
results so far have been obtained with ad hoc techniques developed for the spe-
cific equational theory under consideration (see e.g. results on semirings [1] and
idempotent operations [2]).
The collection of methods developed to compute solutions to a generalization
problem often goes under the name of anti-unification. This terminology suggests
a connection between generalization and the arguably better known unification
problems, where one seeks common instantiations to pairs of given terms. Our ap-
proach is indeed inspired by Ghilardi’s algebraic setting for the study of equational
unification problems [5].
Generally speaking, our methods are those of universal algebra, which is a most
natural environment to handle equational theories from the side of their classes
of models, i.e., varieties. In more detail, we first introduce a purely algebraic
representation of equational generalization problems (called e-generalization prob-
lems from now on) and their solutions; secondly, we develop a universal-algebraic
methodology for studying the e-generalization type, applying it in particular to
(algebraizable) logics, where the considered equational theory is that of logical
equivalence.
We show that e-generalization problems always have a best solutions (i.e., unitary
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type), in the following varieties: (abelian) groups, (commutative) semigroups and
monoids; all varieties whose 1-generated free algebra is trivial, e.g., lattices, semi-
lattices, varieties without constants whose operations are idempotent; Boolean
algebras, Kleene algebras and Gödel algebras, which are the equivalent algebraic
semantics of, respectively, classical, 3-valued Kleene, and Gödel-Dummett logic.

Symbolic e-generalization

The following definition of an e-generalization problem corresponds to the usual
one used in the literature, just rephrased in the context of varieties and their free
algebras; we only observe that while in the literature e-generalization problems
are often considered to be just a pair of terms, we here consider the more general
case of allowing a finite set of terms of any cardinality.

Definition 1. A symbolic e-generalization problem for a variety V is a finite set
t of terms t1, . . . , tm ∈ FV(X) for some finite set of variables X. A solution
(or generalizer) is a term s ∈ FV(Y ), with Y = Var(s), for which there exist
substitutions σ1, . . . , σm such that V |= σk(s) ≈ tk for all k = 1, . . . ,m. In this
case we say that s is witnessed (or testified) by σ1, . . . , σm.

Any symbolic generalization problem t1, . . . , tm always has a solution: a fresh
variable z, testified by the obvious substitutions σk(z) = tk for k = 1, . . . ,m. This
is the most general solution for t1, . . . , tm, in the sense that every other solution
can be obtained from it by further substitution. In this context the interesting
solutions are the least general ones, that are as close as possible to the initial
terms representing the problem. Let us make these notions precise.
Consider two terms over the same language s and u; we say that s is less general
than u, and write

s ⪯ u, iff there exists a substitution σ such that σ(u) = s. (0.1)

Let us then fix a problem t ⊆ FV(X) and let S(t) be the set of its solutions; ⪯
is a preorder on S(t). With a slight abuse of notation we denote by (S(t),⪯)
its associated poset of equally general solutions, that we call the generality poset
of t. Given a symbolic e-generalization problem t, its e-generalization type is
either: unitary, finitary, infinitary, or nullary, depending on the cardinality of any
minimal (complete) set of solutions in (S(t),⪯).
Given a variety V, its symbolic e-generalization type is the worst possible type
occurring among all its e-generalization problems, the best-to-worst order being:
unitary > finitary > infinitary > nullary.
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Algebraic e-generalization

The algebraic translation of e-generalization problems uses projective and exact
algebras in the considered variety. Let us call an algebra A a retract of an algebra
F if there are homomorphisms i : A → F, j : F → A such that j ◦ i = idA (and
then necessarily i is injective and j is surjective); in this case we say that A is an
(i, j)-retract of F.
Consider a variety V. An algebra P ∈ V is projective in V if it is a retract of a free
algebra in V; an algebra E ∈ V is called exact in V if it is isomorphic to a finitely
generated subalgebra of some (finitely generated) free algebra. Evocatively, if we
consider an exact algebra that is (isomorphic to) a subalgebra of a free algebra
FV(X) generated by a term t, we write it as E(t).
The key idea that makes our translation works is to see the terms t1, . . . , tm
representing the problem as a single element (t1, . . . , tm) of the direct product of
the exact algebras E(tk); it will be convenient to represent this tuple as the image
of a fresh variable z via some map, which extends to a homomorphism on the
1-generated algebra in the associated variety, FV(z).

Definition 2. We call an algebraic e-generalization problem for a variety V a
homomorphism h : FV(z) −→ ∏m

k=1 Ek for some m ⩾ 1, where each Ek is an exact
algebra in V.
A solution (or generalizer) for h is any homomorphism g : FV(z) −→ P, where P
is finitely generated and projective in V, for which there exists a homomorphism
f : P −→ ∏m

k=1 Ek such that f ◦ g = h, as illustrated in the following diagram:

FV(z)
m∏
k=1

Ek

P

g

h

f

We say that f witnesses or testifies the solution g.

Let us define a generality order among algebraic solutions. Fix an algebraic prob-
lem h : FV(z)→ ∏m

k=1 Ek. Given two generalizers g : FV(z)→ P, g′ : FV(z)→ P′,
we say that g is less general than g′ and we write

g ⊑ g′ if and only if there exists h : P′ → P such that h ◦ g′ = g. (0.2)

The relation ⊑ is easily checked to be a preorder on the set of generalizers for
h. We write (A(h),⊑) for the corresponding poset of equally general generalizers.
The algebraic e-generalization type of a problem is then given in complete analogy
with the symbolic case, by checking the cardinality of a minimal complete set of
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solutions; similarly, one can define the algebraic e-generalization type of a variety
as the worst possible type of its problems.
Let us now discuss how to translate back and forth between symbolic and al-
gebraic problems and solutions. Let t = {t1, . . . , tm} ⊆ FV(X) be a symbolic
e-generalization problem for a variety V, and s ∈ FV(Y ) be a solution. Let us
define Alg(t) and Alg(s) as the (unique) homomorphisms extending the following
assignments:

Alg(t) : z ∈ FV(z) 7−→ (t1, . . . , tm) ∈
m∏
k=1

E(tk),

Alg(s) : z ∈ FV(z) 7−→ s ∈ FV(Y ).

Conversely, let h : FV(z) → ∏m
k=1 Ek be an algebraic e-generalization problem,

where each Ek embeds via a homomorphism ek to some free algebra FV(Xk);
consider a solution g : FV(z) → P, where P is an (i, j)-retract of FV(Y ). Let pk
be the k-th projection on ∏m

k=1 Ek, we define:

Sym(h) = {t1, . . . , tm}, where tk = ek ◦ pk ◦ h(z) for k = 1, . . .m;
Sym(g) = (i ◦ g)(z) ∈ FV(Y ).

We can prove the following.

Theorem 1. A symbolic e-generalization problem t ⊆ FV(X) has a term s ∈
FV(Y ) as solution if and only if Alg(s) is a solution to Alg(t); conversely, an
algebraic e-generalization problem h : FV(z) → ∏m

k=1 Ek has a homomorphism
g : FV(z)→ P as a solution if and only if Sym(g) is a solution to Sym(h).

Corollary 1. Given a variety V, its symbolic and algebraic e-generalization types
coincide.

E-generalization type via congruences

After developing the general theory, we take advantage of some basic universal-
algebraic tools, and develop a methodology based on the study of the congruence
lattice of the 1-generated free algebra in the considered variety. In particular, we
identify a class of varieties where the study of the generality type can be fully
reduced to the study of this congruence lattice. Let us first transfer the notions
of projective and exact from algebras to congruences: we call a congruence θ of a
free algebra FV(X) projective (or exact) if FV(X)/θ is projective (or exact) in V.

Definition 3. We say that an algebra S in a variety V is strongly projective in V
if it is projective in V, and whenever there is an embedding i : S → P, for some
projective algebra P, there is a homomorphism j : P → S such that j ◦ i = idS.
We say that a variety V is 1ESP if all 1-generated exact algebras in V are strongly
projective in V.
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Given any e-generalization problem h, let us call G(h) the set of all congruences
that appear as kernels of its solutions; in other words, G(h) is the image under
the function ker of the set A(h), given by all solutions to h: G(h) = ker[A(h)].
In varieties such that every 1-generated exact algebra is (strongly) projective, one
can show that:

G(h) = {θ ∈ Con(FV(z)) : θ ⊆ ker(h), θ projective in V}.

Theorem 2. Let V be a 1ESP variety, and consider an algebraic e-generalization
problem h. Its poset of solutions A(h) is dually isomorphic to the poset of con-
gruences in G(h).

Using this theorem, one can show that both Boolean and Kleene algebras have
unitary e-generalization type, as well as all varieties whose 1-generated free algebra
is trivial, e.g., lattices, semilattices, varieties without constants whose operations
are idempotent.
Finally, we identify a sufficient condition for a problem, and for a variety, to have
unitary e-generalization type.

Theorem 3. Let h : FV(z) → ∏m
k=1 Ek be an algebraic e-generalization problem.

If ker(h) is projective then the e-generalization type of h is unitary.

Corollary 2. If V is a variety for which finite intersections of exact congruences
of FV(z) are projective, then V has unitary e-generalization type.

As a consequence, one can see that the following varieties have unitary e-
generalization type: abelian groups, commutative semigroups and monoids, Gödel
algebras.
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Introduction. Abelian logic, introduced in [2, 6], is the logic of lattice-ordered
abelian groups, or, equivalently, R equipped with the operations min, max, +, −,
and 0. A minimal modal extension of this logic, called Abelian modal logic, was
defined in [3] based on standard Kripke frames, where the operations on R are
calculated locally at worlds and the modal operator � is interpreted by taking
infima of values at accessible worlds. Abelian modal logic not only provides a
framework for reasoning about (transitions between) states represented by vectors
over R, but also contains, under translation, the minimal Łukasiewicz modal logic
studied in [4].
Notably, both Abelian modal logic and Łukasiewicz modal logic lack an explicit
finitary axiomatisation. As a first step towards addressing this gap, an axiom-
atization was obtained in [3] for the modal-multiplicative fragment of the logic
following a proof-theoretic approach. In [5], this approach was used to obtain
a quasi-equational axiomatization of the equational theory of the modal-meet-
semilattice-ordered-monoid fragment. In this work, we employ a canonical model
construction to establish completeness of a quasi-equational axiomatization for a
variation on the latter logic. In particular, instead of considering truth values in
R, we restrict our attention to the set R⩽0 of non-negative real numbers, where 0 is
considered the designated truth value, and the strictly negative numbers represent
increasing degrees of falsehood. Alternatively, truth values can be taken from the
open-closed unit interval (0, 1], with the operations min, · (multiplication), and 1.

Semantics. Formulas φ, ψ, χ, . . . are defined over a countably infinite set of
propositional variables P with respect to a language with binary operation sym-
bols ∧ and ⊕, unary operation symbol �, and constant symbol e. We also define
0φ := e and (n + 1)φ := nφ ⊕ φ for n ∈ N. An equation is an ordered pair of
formulas, written φ ≈ ψ, and φ ≤ ψ abbreviates φ ∧ ψ ≈ φ.
Let R⩽0 be the algebra ⟨R⩽0,min,+, 0⟩. A K(R⩽0)-model M = ⟨W,R, V ⟩ con-
sists of a non-empty set of worlds W , an accessibility relation R ⊆ W 2, and an
evaluation map V that assigns to each p ∈ P a function V (p) : W → R⩽0. The
value JφK(w) of a formula φ in M at a world w ∈ W is defined recursively as
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follows:

JpK(w) = V (p)(w)
JeK(w) = 0

Jψ ⊕ χK(w) = JψK(w) + JχK(w)
Jψ ∧ χK(w) = min(JψK(w), JχK(w))

J�ψK(w) =
∧
{JψK(v) | wRv}.

Note that the meet in the interpretation of boxed formulas does not exist when
the set contains arbitrarily small negative real numbers, and we therefore restrict
our attention to models where this issue does not occur, i.e., models such that
JφK(w) is defined for every formula φ and world w ∈ W . Note also that the empty
meet is well-defined and equal to 0.
For an equation φ ≈ ψ, we define

|=K(R⩽0) φ ≈ ψ :⇐⇒ JφK(w) = JψK(w) for every K(R⩽0)-model ⟨W,R, V ⟩ and w ∈ W

It is easily proved, along the same lines as the proof for Abelian modal logic in [3],
that this logic admits a finite model property; that is, |=K(R⩽0) φ ≈ ψ if and
only if JφK(w) = JψK(w) for every finite K(R⩽0)-model ⟨W,R, V ⟩ and w ∈ W .
Decidability is also easily established, e.g., by providing a tableau proof system,
again following the methodology of [3].

Axiomatisation. Next we define the target axiomatisation for our modal logic.
Let Qmsm denote the quasi-variety of algebras ⟨A,∧,⊕, e,�⟩ defined by equa-
tions axiomatizing the variety of meet-semilattice-ordered commutative monoids,
together with the (quasi-)equations

• x ⩽ e (e is the greatest element);

• x⊕ z ⩽ y ⊕ z =⇒ x ⩽ y (cancellation);

• nx ⩽ ny =⇒ x ⩽ y for each n ∈ N+ (torsion-freeness);

• �x⊕�y ⩽ �(x⊕ y);

• �(nx) ≈ n(�x) for each n ∈ N.

We prove the following:

Theorem 1 (Completeness theorem). For any equation φ ≈ ψ,

|=K(R⩽0) φ ≈ ψ ⇐⇒ Qmsm |= φ ≈ ψ.
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Canonical model construction. Recall that in classical modal logic the
canonical model has as its worlds maximally consistent sets of formulas, or, equiv-
alently, ultrafilters of the free Boolean algebra [1]. These are in one-to-one corre-
spondence with homomorphisms from the free Boolean algebra to the two-element
Boolean algebra. Let F� denote the free algebra of Qmsm over the set of genera-
tors P , and F its non-modal reduct. Analogously to the classical case, we define
the set of worlds of our canonical model to be the set of homomorphisms from F
to R⩽0. We define an accessibility relation R on this set as follows:

h1Rh2 :⇐⇒ h1(�a) ⩽ h2(a) for each a ∈ F,

i.e., for h2 to be a successor of h1 we request that h2 internally “thinks” each a to
be more true than what h1 “thinks” about the boxed version �a. The valuation
is standard: the value of p ∈ P in a world h is defined to be h(p); that is,
V (p)(h) := h(p).
We need two main results in order to establish the completeness theorem: a truth
lemma and what we will call a separation lemma. As usual, the truth lemma states
that the values a world h internally assigns to elements of F (essentially formulas),
equals the “external” truth-value of the associated formulas in that world h. The
separation lemma resembles the Lindenbaum lemma: given two distinct elements
of F (essentially two non-equivalent formulas), we need to produce a world h that
separates these, i.e., assigns them distinct values.
In both cases, we construct a homomorphism h : F → R⩽0 by first defining a
homomorphism g from a certain freely generated non-modal algebra A to R⩽0.
This A is defined in such a way that it admits F as a quotient. By ensuring that
g factors through this quotient map, we find the desired homomorphism h. The
proof that there exists a morphism g with the required properties makes use of
Farkas’ lemma from linear algebra. This is combined with topological techniques
to reduce infinite sets of requirements to finite ones that differ between the two
lemmata.

Lemma 1 (Separation lemma). Let a, b ∈ F� with a ≰ b. Then there exists a
homomorphism h : F→ R⩽0 such that h(a) > h(b).

In particular, if a ̸= b, then there exists a homomorphism h : F→ R⩽0 such that
h(a) ̸= h(b).

Lemma 2 (Truth lemma). Let h be a world in the canonical model, and φ a
formula. Then JφK(h) = (h ◦ q)(φ), where q denotes the natural quotient-map
from the set of formulas to F.

As usual, the proof of the Truth lemma proceeds by induction on φ. The cases for
e, ∧, and ⊕ are routine, and for � the inequality J�φK(h) ⩽ (h ◦ q)(�φ) follows
from the definition of R. For the converse, we need to find a witness h′ that is a
successor of h such that (h′ ◦ q)(φ) = (h ◦ q)(�φ). The requirement that h′ is a
successor of h amounts to the requirement that h(�a) ⩽ h′(a) for all a, so we find
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an infinite system of requirements. Using a topological compactness argument we
reduce this to finitely many requirements, so that we can employ Farkas’ lemma
in order to find the desired h′.
Together, the Separation lemma and Truth lemma imply that F� embeds into
the complex algebra of the canonical model. Hence, our construction can be seen
as a representation theorem, albeit only for the free algebra F�. In particular,
this shows that any generalised quasi-equation valid in the complex algebra of
the canonical model gives rise to an admissible rule in the logic. Restricting at-
tention to equations, the completeness part of the Completeness theorem follows,
i.e., |=K(R⩽0) φ ≈ ψ implies Qmsm |= φ ≈ ψ. For soundness, it is easy to check
that any complex algebra satisfies all the quasi-equations in the axiomatisation.

Future work. The results presented here represent a first step in an effort
to obtain canonical models for real-valued modal logics, in particular Abelian
modal logic and Łukasiewicz modal logic, with a view to establishing completeness
results for suitable axiomatizations. A further step towards this goal would be to
investigate either the logic considered in this work, or the corresponding fragment
of Abelian modal logic studied in [5], extended with the binary join operator ∨
(interpreted as max in R). However, it is currently unclear how to adapt the
applications of Farkas’ lemma in our proofs to deal with joins.
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Introduction

The Płonka sum is a construction introduced in the 1960s in Universal Algebra by
the eponymous Polish mathematician [7] (see also [9, 1]) that allows to construct a
new algebra out of a semilattice direct system of similar (disjoint) algebras, called
the fibers (of the system). The theory of Płonka sums has been mostly studied in
the case of a similarity type without constant functional symbols: in such a case
the fibres are subalgebras of their Płonka sum.
Płonka sums are strictly connected with regular identities. Recall that an identity
α ≈ β (in an algebraic language τ and over some set of variables X) is regular if
V ar(α) = V ar(β). An identity α ≈ β is valid in the Płonka sum over a non-trivial
semilattice direct system A = ((Ai)i∈I , (I,≤), (pij)i≤j) (i.e. |I| ≥ 2) if and only if
it is a regular identity valid in each of the fibers of A.
Given a class of similar algebras K , its regularization is the variety R(K ) defined
by the regular identities valid in K . This variety is particularly interesting when
the class K is a strongly irregular τ -variety V - an assumption that includes
almost all examples of known irregular varieties -, i.e. a variety satisfying an
identity of the form p(x, y) ≈ x for some binary τ -term p: in such a case, every
algebra in R(V ) is the Płonka sum over a semilattice direct systems (with zero)
of algebras in V .
The following is quite natural.
Question: which algebraic properties holding for V are also valid for R(V )?

With respect to the question, several properties for R(V ) have been established
over the years, including the description of the lattice of the subvarieties of reg-
ularized varieties [3], of their subdirectly irreducible members [5], the equational
basis of regularized varieties [11], and the structure of free algebras [10].
In this talk, we will give a brief overview of the theory of Płonka sums over
an algebraic language with constant symbols with a particular emphasis on the
structural side. Then we will address the above question with respect to the fol-
lowing properties: local finiteness, epimorphism surjectivity (ES), amalgamation
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property (AP) and congruence extension property (CEP).

Free algebras and local finiteness

Free algebras in the regularization R(V ) (of a strongly irregular variety V ) are
characterized by Romanowska in [10] under the assumption that the language of
V contains no constant symbols (see also [8]). The following covers the more
general case of an algebraic language containing constants’ symbols.

Theorem 1. Let A be an algebra in R(V ), with V a strongly irregular variety.
Then A ∈ R(V ) is free on the set of generators {aj}j∈J iff A is a Płonka sum
over a semilattice direct sistem with zero ((Ai)i∈I , (I,≤), (pij)i≤j) such that

1. (I,≤) is the free semilattice with zero on the set of generators J ;

2. for every i ∈ I,Ai is a finitely generated V -free algebra.
In particular Ai has n generators Gi = {gi1, . . . , gin} iff i = i1 ∨ · · · ∨ in, for
i1, . . . , in ∈ J (ik ̸= im for k ̸= m), and if i ∈ J then Ai is one generated by
the element gi1 = ai1 = ai;

3. for every i ∈ I, pi0i is the unique homomorphism from Ai0 into Ai, where
i0 is the least element of I, while for every i1, ..., in ∈ J (∀n ∈ N+) if
i = i1 ∨ ... ∨ ... ∨ in then for every j ∈ {1, ..., n} : piji : Aij → Ai is
the unique (injective) homomorphism extending the map p0

iji
: {aij} → Ai,

aij 7→ p0
iji

(gij) := gkj . In particular, for i0 ̸= i ⩽ k, pik : Ai → Ak is
the unique (injective) homomorphism extending the map p0

ik : Gi → Ak,
gij 7→ p0

ik(gij) := gkj .

Corollary 1. Let V be a strongly irregular variety, R(V ) its regularization, An

the R(V )-free algebra on n ∈ N generators, then

|An| =
n∑
j=0

(
n

j

)
|Bj|,

where Bj is the V -free algebra on j generators.

Since local finiteness can be controlled on free algebras [2, Theorem 10.15], the
following corollary holds.

Corollary 2. Let V be a strongly irregular variety. If V is locally finite, then
R(V ) is locally finite.
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Congruences

In [1] a very natural problem is posed: to describe the congruence lattice of
algebras in regular varieties.

Let A = ((Ai)i∈I , (I,≤), (pij)i≤j) be a semilattice direct system in a strongly irreg-
ular τ -variety V and A its Płonka sum. Let’s begin our investigation by starting
with a congruence and trying to deduce its essential structural features.

Let θ ∈ Con(A), then for every (i, j) ∈ I× I we define θij := θ ∩ (Ai × Aj) and
Sθ := {(i, j) ∈ I × I | θij ̸= ∅}.

Lemma 1. Let τ be any algebraic language, then ∀(i, j) ∈ Sθ,∀a ∈ Ai :
(a, pii∨j(a)) ∈ θ. Moreover, Sθ is a reflexive and symmetric subsemilattice of
I× I.

Unfortunately, transitivity is not guaranteed, but a (kind of) weak form of transi-
tivity, outlined in the following Lemma, is always valid.

Lemma 2. Let τ be any algebraic language, then ∀i, j, k ∈ I : (i, j), (j, k) ∈ Sθ ⇒
(i, i ∨ k) ∈ Sθ.

To simplify the exposition, we will say that Sθ is upper transitive.
In some particular, yet relevant, cases, Sθ turns out to be a congruence on I.

Corollary 3. Let τ be any algebraic language. If one of the following occurs:

(i) I is a chain;

(ii) τ be an algebraic language containing constants

then Sθ ∈ Con(I).

Consequently, transitivity is always ensured for algebraic languages having con-
stants.

The following result provides the sought-after characterization.

Theorem 2. Let τ be any algebraic language. Let S ⊆ I × I and (θii)i∈I be a
family such that the following conditions occur:

(i) S is a reflexive, symmetric and upper transitive subsemilattice of I× I;

(ii) ∀i ∈ I : θii ∈ Con(Ai);
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(iii) ∀(i, j) ∈ I × I : θii ⊆ (pii∨j × pii∨j)−1(θi∨j,i∨j), with equality if (i, j) ∈ S;

(iv) ∀(i, j) ∈ I × I : (i, j) ∈ S ⇐⇒ (i, i ∨ j), (j, i ∨ j) ∈ S, (pii∨j ×
pji∨j)−1(θi∨j,i∨j) ̸= ∅

For every (i, j) ∈ S \∆I, let θij := (pii∨j × pji∨j)−1(θi∨j,i∨j), then

θ :=
⋃

(i,j)∈S
θij ∈ Con(A).

Furthermore, all the elements of Con(A) arise in this way.

In the case of an algebraic language containing constants (or if V admits an alge-
braic constant), the characterization takes on a simpler form, since requirement
(iv) is automatically satisfied and S ∈ Con(I).

Amalgamation and Congruence Extension Prop-
erty

It is very natural to ask whether the amalgamation property (AP) can be “lifted”
through Płonka sums. More precisely, does R(V ) have the (strong) AP when V
is strongly irregular and has (strong) AP?
The fact that semilattices (with zero) have (strong) AP could point to a positive
answer. Surprisingly enough, Hall [4, Remark 5] showed that Clifford semigroups,
namely the regularization of groups (see [9] for details), fail to have AP.
Thanks to the following notion, Hall’s argument can be easily generalized.

Definition 1. An algebra A is hereditarily simple if each of its subalgebras is
simple.
A variety V is hereditarily simple if each simple algebra in V is hereditarily simple.

The following result by Pastijn [6] links the validity of the congruence extension
property in a strongly irregular variety to the existence of amalgams in R(V ) for
specific V -formations in R(V ).

Proposition 1 ([6]). Let V be a strongly irregular variety. Then V has CEP iff
∀A ∈ V , ∀B ≤ A,∀θ ∈ Con(B) the following V -formation in R(V )
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B

B

A

B/θ
π

iB

iA

has an amalgam in R(V ).

Corollary 4. Let V be a strongly irregular variety. If R(V ) has AP, then V has
CEP. In particular, if V is not hereditarily simple, then R(V ) fails to have AP.

Pastijn [6] indeed gives an answer to our question with respect to (strong) AP
and CEP.

Theorem 3 ([6]). Let V be a strongly irregular variety. Then:

1. R(V ) has CEP if and only if V has CEP.

2. R(V ) has (strong) AP if and only if V has CEP and (strong) AP.

Epimorphism Surjectivity

Epimorphism surjectivity is another property preserved by Płonka sums. More
specifically

Theorem 4. Let V be a strongly irregular variety. R(V ) has ES if and only if
V has ES.
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