The structure of the ℓ -pregroup $\mathbf{F}_n(\mathbf{Z})$

Nick $Galatos^1$ and $Simon\ Santschi^2$

¹ University of Denver, Denver, Colorado, USA ngalatos@du.edu
² Mathematical Institute, University of Bern, Switzerland simon.santschi@unibe.ch

Abstract

Lattice-ordered pregroups (ℓ -pregroups) are exactly the involutive residuated lattices where addition and multiplication coincide. Among them, for every n, the n-periodic ℓ -pregroup $\mathbf{F}_n(\mathbb{Z})$ of n-periodic order-preserving functions on \mathbb{Z} plays an important role in understanding distributive ℓ -pregroups and also n-periodic ones. We study the structure of this algebra in great detail and provide order-theoretic and monoidal-theoretic descriptions. This then paves the way for axiomatizing the variety generated by $\mathbf{F}_n(\mathbb{Z})$, covered in a different submission.

1 Introduction

A lattice-ordered pregroup $(\ell\text{-pregroup})$ is an algebra $(A, \wedge, \vee, \cdot, \ell, r, 1)$, where (A, \wedge, \vee) is a lattice, $(A, \cdot, 1)$ is a monoid, multiplication preserves the lattice order \leq , and for all $x \in A$,

$$x^{\ell}x \le 1 \le xx^{\ell}$$
 and $xx^{r} \le 1 \le x^{r}x$.

We often refer to x^ℓ and x^r as the *left* and *right inverse* of x, respectively. The well-studied lattice-ordered groups (ℓ -groups) are exactly the ℓ -pregroups where the two inverses coincide: $x^\ell = x^r$. Also, ℓ -pregroups constitute lattice-ordered versions of *pregroups*, which are ordered structures introduced by Lambek [11] in the study of applied linguistics, where they are used to describe sentence patterns in many natural languages; they have also been studied extensively by Buzkowski [1] and others in the context of mathematical linguistics in connection to context-free grammars. Pregroups where the order is discrete (and also pregroups that satisfy $x^\ell = x^r$) are exactly groups.

The main reason for our interest in ℓ -pregroups is that they are precisely the *involutive* residuated lattices that satisfy x + y = xy; in that respect their study is connected to the algebraic semantics of substructural logics [8].

It is easy to show that the underlying lattices of ℓ -groups are distributive, but it remains an open problem whether every ℓ -pregroup is distributive. Partial answers to this question include [7], where it is shown that ℓ -pregroups are semidistributive, and [5], where it is shown that all periodic (see below) ℓ -pregroups are distributive. We denote by DLP the variety of distributive ℓ -pregroups.

In analogy to Cayley's theorem for groups, Holland's embedding theorem [9] shows that every ℓ -group can be embedded into a symmetric ℓ -group $\operatorname{Aut}(\Omega)$ —the group of order-preserving permutations on a totally ordered set Ω . Also, Holland's generation theorem [10] states that $\operatorname{Aut}(\mathbb{Q})$ generates the variety of ℓ -groups and this is further used to show that the equational theory of ℓ -groups is decidable. In [4] it is shown that every distributive ℓ -pregroup embeds into a functional ℓ -pregroup $\operatorname{F}(\Omega)$ (a generalization of a symmetric ℓ -group), where Ω is a chain; actually Ω can be taken to be an ordinal sum of copies of the integers, as shown in [2]. Under the general definition where Ω is an arbitrary chain, the algebra $\operatorname{F}(\Omega)$ consists of all functions

on Ω that have residuals and dual residuals of all orders, but in the special case where Ω is the chain of the integers, $\mathbf{F}(\mathbb{Z})$ ends up consisting of all order-preserving functions on \mathbb{Z} that are finite-to-one (the preimage of every singleton is a finite set/interval). This representation theorem for distributive ℓ -pregroups is used in [2] to prove an analogue of Holland's generation theorem: the ℓ -pregroup $\mathbf{F}(\mathbb{Z})$ generates the variety DLP (and that its equational theory is decidable).

For every positive integer n, the functions f in $\mathbf{F}(\mathbb{Z})$ that are periodic and have period n end up being exactly the ones that satisfy $f^{\ell^n} = f^{r^n}$ and they form a subalgebra of $\mathbf{F}(\mathbb{Z})$, which we denote by $\mathbf{F}_n(\mathbb{Z})$; here $f^{\ell^3} = f^{\ell\ell\ell}$, for example. In [3] it is proved that DLP is equal to the join of the varieties $\mathsf{V}(\mathbf{F}_n(\mathbb{Z}))$. This demonstrates the importance of the varieties $\mathsf{V}(\mathbf{F}_n(\mathbb{Z}))$, and hence also the algebras $\mathbf{F}_n(\mathbb{Z})$, in understanding distributive ℓ -pregroups. For example, if an equation fails in DLP, it fails in some $\mathbf{F}_n(\mathbb{Z})$ (and [3] further provides a concrete suitable n).

More generally, in an arbitrary ℓ -pregroup an element x is called n-periodic if $x^{\ell^n} = x^{r^n}$; an ℓ -pregroup is called n-periodic if all of its elements are, and the corresponding variety is denoted by LP_n . As mentioned before, in [5] it is shown that $\mathsf{LP}_n \subseteq \mathsf{DLP}$, for all n, and in [3] it is further proved that the join of all of the LP_n 's is exactly DLP . Thus $\mathsf{DLP} = \bigvee \mathsf{LP}_n = \bigvee \mathsf{V}(\mathbf{F}_n(\mathbb{Z}))$. These two appoximations of DLP are quite different since, as shown in [3], the variety $\mathsf{V}(\mathbf{F}_n(\mathbb{Z}))$ is properly contained in LP_n for every single n. Even though $\mathsf{LP}_n \neq \mathsf{V}(\mathbf{F}_n(\mathbb{Z}))$, for every n, $\mathsf{F}_n(\mathbb{Z})$ actually plays an important role in understanding LP_n , as well: it is shown in [3] that every n-periodic ℓ -pregroup can be embedded in a wreath product of an ℓ -group and $\mathsf{F}_n(\mathbb{Z})$.

2 The structure of the algebra

In [3], enough aspects of $\mathbf{F}_n(\mathbb{Z})$ are studied in order to obtain the above results and also the decidability of the equational theory of $\mathbf{F}_n(\mathbb{Z})$, for all n. However, the lattice-theoretic and monoidal-theoretic structure of $\mathbf{F}_n(\mathbb{Z})$ has been described only for n = 2, in [5]. In this contribution we provide a detailed description of $\mathbf{F}_n(\mathbb{Z})$, for all n.

Toward describing the monoidal structure of $\mathbf{F}_n(\mathbb{Z})$ we first identify two of its submonoids: $\boldsymbol{b}^{\mathbb{Z}}$ and $\mathbf{End}(\mathbf{n})$. We denote by \mathbf{b} the function $x \mapsto x+1$ on \mathbb{Z} and by $\boldsymbol{b}^{\mathbb{Z}} := \{\mathbf{b}^k : k \in \mathbb{Z}\}$ the subgroup that it generates; $\boldsymbol{b}^{\mathbb{Z}}$ is an ℓ -group (isomorphic to \mathbb{Z}) and it is the largest subgroup ℓ -subgroup of $\mathbf{F}_n(\mathbb{Z})$ (i.e., the set of all of invertible elements of $\mathbf{F}_n(\mathbb{Z})$). For each n the maps

$$\sigma_n(x) = x \wedge x^{\ell\ell} \wedge \dots \wedge x^{\ell^{2n-2}}$$
 and $\gamma_n(x) = x \vee x^{\ell\ell} \vee \dots \vee x^{\ell^{2n-2}}$,

are an interior and a closure operator on $\mathbf{F}_n(\mathbb{Z})$, respectively; also they both have image equal to $\boldsymbol{b}^{\mathbb{Z}}$. In particular, $\mathbf{F}_n(\mathbb{Z})$ is the convex closure of $\boldsymbol{b}^{\mathbb{Z}}$.

For every $n \in \mathbb{Z}$, we denote by **n** the *n*-element chain 0 < 1 < ... < n-1 and by $End(\mathbf{n})$ the endomorphisms (i.e., order-preserving maps) on **n**. $End(\mathbf{n})$ forms a distributive lattice by pointwise order and a monoid under functional composition, and multiplication distributes over both join and meet; the resulting *distributive lattice-ordered monoid* (DLM) is denoted by $\mathbf{End}(\mathbf{n})$.

The *n*-periodic extensions to \mathbb{Z} of the functions in $\operatorname{End}(\mathbf{n})$ form a subDLM of $\mathbf{F}_n(\mathbb{Z})$, which we denote by $\operatorname{End}(\mathbf{n})$ as well, by abusing notation. We observe that actually this is only one of the *n*-many different (overlapping) subDLM of $\mathbf{F}_n(\mathbb{Z})$ that are isomorphic to $\operatorname{End}(\mathbf{n})$. We prove that the union of these copies of $\operatorname{End}(\mathbf{n})$ in $\mathbf{F}_n(\mathbb{Z})$ is equal to the set of flat elements of $\mathbf{F}_n(\mathbb{Z})$, and is contained in the interval $[\mathbf{b}^{1-n}, \mathbf{b}^{n-1}]$; an element x of an ℓ -pregroup is called flat if there exist idempotents y, z such that $y \leq x \leq z$.

We prove that every element of $\mathbf{F}_n(\mathbb{Z})$ can be written as a product of the form xy and of the form y'x', where $x, x' \in End(\mathbf{n})$ and $y, y' \in \mathbf{b}^{\mathbb{Z}}$; thus, $F_n(\mathbb{Z}) = End(\mathbf{n}) \cdot \mathbf{b}^{\mathbb{Z}} = \mathbf{b}^{\mathbb{Z}} \cdot End(\mathbf{n})$. Furthermore, we prove that each of these decompositions is unique. However, $\mathbf{F}_n(\mathbb{Z})$ is not isomorphic to the direct product of $\mathbf{End}(\mathbf{n})$ and \mathbb{Z} , nor even to a semidirect product of them.

Let \mathbf{M} and \mathbf{N} be monoids, where

- *: $M \times N \to N$ a left action of **M** on **N**: 1 * n = n and $m_1 * (m_2 * n) = m_1 m_2 * n$,
- \star : $M \times N \to M$ a right action of **N** in **M**: $m \star 1 = m$ and $(m \star n_1) \star n_2 = m \star n_1 n_2$,
- $m * n_1 n_2 = (m * n_1)((m * n_1) * m_2)$ and
- $m_1 m_2 \star n = (m_1 \star (m_2 * n))(m_2 \star n)$.

Then $\mathbf{N} \times_{\star}^{*} \mathbf{M} = \langle N \times M, \circ, \langle 1, 1 \rangle \rangle$, where $\langle n_{1}, m_{1} \rangle \circ \langle n_{2}, m_{2} \rangle = \langle n_{1}(m_{1} * n_{2}), (m_{1} * n_{2})m_{2} \rangle$, is a monoid called the Zappa product of \mathbf{N} and \mathbf{M} with respect to the two actions. Note that if \star is trivial $(m \star n = m, \text{ for all } n, m)$ or * is trivial, then the Zappa product is a (left or right) semidirect product.

Theorem 1. The monoid reduct of $\mathbf{F}_n(\mathbb{Z})$ is isomorphic to the Zappa product $\mathbf{End}(\mathbf{n}) \times_{\star}^* \mathbb{Z}$, where $b^m \star a = c$ and $a * b^m = b^k$, and $c \in \mathbf{End}(\mathbf{n})$ and $k \in \mathbb{Z}$ are the unique elements such that $b^m a = cb^k$.

Now, to describe the order structure of $\mathbf{F}_n(\mathbb{Z})$ we describe its poset of join irreducibles. We define the poset $\mathbf{C}_n^{\mathbb{Z}} := ([0, n-1] \times \mathbb{Z}, \leq)$ by: for $(m, k), (m', k') \in [0, n-1] \times \mathbb{Z}$,

$$(m,k) \le (m',k') : \iff m -_n m' \le (k'-m') - (k-m).$$

As usual for $m, m' \in [0, n-1]$, $m -_n m'$ (difference modulo n) is equal to m - m' if $m \ge m'$ and to m - m' + n if m < m'. In particular, $m -_n m' \in [0, n-1]$. Since $0 \le m -_n m'$, this definition implies $k - m \le k' - m'$. Also, we note that the corresponding covering relation is

$$(m,k) \prec (m',k') : \iff m+1=m' \text{ or } (m=m' \text{ and } k=k'+n 1).$$

Figure 1: The infinite-layered posets $\mathbb{C}_3^{\mathbb{Z}}$ and $\mathbb{C}_4^{\mathbb{Z}}$.

Theorem 2. An element of $\mathbf{F}_n(\mathbb{Z})$ is join irreducible iff it is meet irreducible. Also, the poset of join irreducibles of $\mathbf{F}_n(\mathbb{Z})$ is isomorphic to $\mathbf{C}_n^{\mathbb{Z}}$.

We further define a multiplication on $\mathbf{C}_n^{\mathbb{Z}}$ by:

$$(m', k') \cdot (m, k) = (m, S_n(k - m') + k').$$

Here, for every $n, a \in \mathbb{Z}$, we define $S_n(a) := qn$, where a = qn + r, $0 \le r < n$ and $q, r \in \mathbb{Z}$ are given by the division algorithm; i.e., $S_n(a)$ is the largest whole multiple of n below (and including) a. Note that $(\mathbf{C}_n^{\mathbb{Z}}, \cdot)$ is a semigroup isomorphic to the semidirect product of $(\mathbb{Z}, +)$ and the right-zero semigroup on [0, n - 1], where the action $*: [0, n - 1] \times \mathbb{Z} \to \mathbb{Z}$ is defined by $m * k := S_n(k - m)$.

Theorem 3. The join irreducibles of $\mathbf{F}_n(\mathbb{Z})$ form a partially-ordered semigroup that is isomorphic to $(\mathbf{C}_n^{\mathbb{Z}}, \leq, \cdot)$. Also, the join irreducibles of $\mathbf{F}_n(\mathbb{Z})$ are closed under the inverses, and the corresponding operations on $\mathbf{C}_n^{\mathbb{Z}}$ are:

$$(m,k)^{\ell} := (k-n+1-S_n(k-n+1), m-S_n(k-n+1))$$
 and $(m,k)^r := (k-S_n(k), m+n-1-S_n(k)).$

In view of this result the elements of $\mathbf{F}_n(\mathbb{Z})$ can be viewed as downsets of $\mathbf{C}_n^{\mathbb{Z}}$; then the lattice operations are simply union and intersection, while multiplication and the inversions is simply the element-wise lifting of the multiplication and inversions on $\mathbf{C}_n^{\mathbb{Z}}$.

In view of Theorem 1 we also provide an analysis of $\mathbf{End}(\mathbf{n})$ as a DLM, and of the positive cones of $\mathbf{End}(\mathbf{n})$ and $\mathbf{F}_n(\mathbb{Z})$, via their poset of join irreducibles (as a finitary or one-sided versions of $\mathbf{C}_n^{\mathbb{Z}}$), as well as their multiplicative structure in terms of irreducible generators.

The above analysis can be used to prove the following generation result. The *periodicity* of an element is defined to be the smallest positive k such that the element is k-periodic.

Theorem 4. $\mathbf{F}_n(\mathbb{Z})$ is generated by any one of its elements of periodicity n.

References

- [1] W. Buszkowski. Pregroups: models and grammars. Relational methods in computer science, 35–49, Lecture Notes in Comput. Sci., 2561, Springer, Berlin, 2002.
- [2] N. Galatos and I. Gallardo. Distributive ℓ -pregroups: generation and decidability. Journal of Algebra 648, 2024, 9–35.
- [3] N. Galatos and I. Gallardo. Generation and decidability for periodic ℓ-pregroups. accepted in Journal of Algebra.
- [4] N. Galatos and R. Horčík. Cayley's and Holland's theorems for idempotent semirings and their applications to residuated lattices. Semigroup Forum 87 (2013), no. 3, 569–589.
- [5] N. Galatos, P. Jipsen, Periodic lattice-ordered pregroups are distributive. Algebra Universalis 68 (2012), no. 1-2, 145–150.
- [6] N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Transactions of the AMS 365(3) (2013), 1219–1249
- [7] N. Galatos, P. Jipsen, M. Kinyon, and A. Přenosil. Lattice-ordered pregroups are semi-distributive. Algebra Universalis 82 (2021), no. 1, Paper No. 16, 6 pp.
- [8] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an algebraic glimpse at substructural logics. Studies in Logic and the Foundations of Mathematics, 151. Elsevier B. V., Amsterdam, 2007. xxii+509 pp.
- [9] W. C. Holland. The lattice-ordered groups of automorphisms of an ordered set. Michigan Mathematical Journal, 10 (4), 399–408, 1963.
- [10] W. C. Holland. The largest proper variety of lattice-ordered groups. Proc. Amer. Math. Soc., 57:25–28, 1976.
- [11] J. Lambek. Pregroup grammars and Chomsky's earliest examples. J. Log. Lang. Inf. 17 (2008), no. 2, 141–160.