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Abstract

Lattice-ordered pregroups (ℓ-pregroups) are exactly the involutive residuated lattices
where addition and multiplication coincide. Among them, for every n, the n-periodic ℓ-
pregroup Fn(Z) of n-periodic order-preserving functions on Z plays an important role in
understanding distributive ℓ-pregroups and also n-periodic ones. We study the structure of
this algebra in great detail and provide order-theoretic and monoidal-theoretic descriptions.
This then paves the way for axiomatizing the variety generated by Fn(Z), covered in a
different submission.

1 Introduction

A lattice-ordered pregroup (ℓ-pregroup) is an algebra (A,∧,∨, ·,ℓ ,r , 1), where (A,∧,∨) is a lat-
tice, (A, ·, 1) is a monoid, multiplication preserves the lattice order ≤, and for all x ∈ A,

xℓx ≤ 1 ≤ xxℓ and xxr ≤ 1 ≤ xrx.

We often refer to xℓ and xr as the left and right inverse of x, respectively. The well-studied
lattice-ordered groups (ℓ-groups) are exactly the ℓ-pregroups where the two inverses coincide:
xℓ = xr. Also, ℓ-pregroups constitute lattice-ordered versions of pregroups, which are ordered
structures introduced by Lambek [11] in the study of applied linguistics, where they are used to
describe sentence patterns in many natural languages; they have also been studied extensively
by Buzkowski [1] and others in the context of mathematical linguistics in connection to context-
free grammars. Pregroups where the order is discrete (and also pregroups that satisfy xℓ = xr)
are exactly groups.

The main reason for our interest in ℓ-pregroups is that they are precisely the involutive
residuated lattices that satisfy x + y = xy; in that respect their study is connected to the
algebraic semantics of substructural logics [8].

It is easy to show that the underlying lattices of ℓ-groups are distributive, but it remains an
open problem whether every ℓ-pregroup is distributive. Partial answers to this question include
[7], where it is shown that ℓ-pregroups are semidistributive, and [5], where it is shown that all
periodic (see below) ℓ-pregroups are distributive. We denote by DLP the variety of distributive
ℓ-pregroups.

In analogy to Cayley’s theorem for groups, Holland’s embedding theorem [9] shows that every
ℓ-group can be embedded into a symmetric ℓ-group Aut(Ω)—the group of order-preserving
permutations on a totally ordered set Ω. Also, Holland’s generation theorem [10] states that
Aut(Q) generates the variety of ℓ-groups and this is further used to show that the equational
theory of ℓ-groups is decidable. In [4] it is shown that every distributive ℓ-pregroup embeds into
a functional ℓ-pregroup F(Ω) (a generalization of a symmetric ℓ-group), where Ω is a chain;
actually Ω can be taken to be an ordinal sum of copies of the integers, as shown in [2]. Under
the general definition where Ω is an arbitrary chain, the algebra F(Ω) consists of all functions
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on Ω that have residuals and dual residuals of all orders, but in the special case where Ω is
the chain of the integers, F(Z) ends up consisting of all order-preserving functions on Z that
are finite-to-one (the preimage of every singleton is a finite set/interval). This representation
theorem for distributive ℓ-pregroups is used in [2] to prove an analogue of Holland’s generation
theorem: the ℓ-pregroup F(Z) generates the variety DLP (and that its equational theory is
decidable).

For every positive integer n, the functions f in F(Z) that are periodic and have period n
end up being exactly the ones that satisfy f ℓn = frn and they form a subalgebra of F(Z), which
we denote by Fn(Z); here f ℓ3 = f ℓℓℓ, for example. In [3] it is proved that DLP is equal to the
join of the varieties V(Fn(Z)). This demonstrates the importance of the varieties V(Fn(Z)),
and hence also the algebras Fn(Z), in understanding distributive ℓ-pregroups. For example, if
an equation fails in DLP, it fails in some Fn(Z) (and [3] further provides a concrete suitable n).

More generally, in an arbitrary ℓ-pregroup an element x is called n-periodic if xℓn = xrn ; an
ℓ-pregroup is called n-periodic if all of its elements are, and the corresponding variety is denoted
by LPn. As mentioned before, in [5] it is shown that LPn ⊆ DLP, for all n, and in [3] it is further
proved that the join of all of the LPn’s is exactly DLP. Thus DLP =

∨
LPn =

∨
V(Fn(Z)).

These two appoximations of DLP are quite different since, as shown in [3], the variety V(Fn(Z))
is properly contained in LPn for every single n. Even though LPn ̸= V(Fn(Z)), for every n,
Fn(Z) actually plays an important role in understanding LPn, as well: it is shown in [3] that
every n-periodic ℓ-pregroup can be embedded in a wreath product of an ℓ-group and Fn(Z).

2 The structure of the algebra

In [3], enough aspects of Fn(Z) are studied in order to obtain the above results and also
the decidability of the equational theory of Fn(Z), for all n. However, the lattice-theoretic
and monoidal-theoretic structure of Fn(Z) has been described only for n = 2, in [5]. In this
contribution we provide a detailed description of Fn(Z), for all n.

Toward describing the monoidal structure of Fn(Z) we first identify two of its submonoids:
bZ and End(n). We denote by b the function x 7→ x + 1 on Z and by bZ := {bk : k ∈ Z} the
subgroup that it generates; bZ is an ℓ-group (isomorphic to Z) and it is the largest subgroup/ℓ-
subgroup of Fn(Z) (i.e., the set of all of invertible elements of Fn(Z)). For each n the maps

σn(x) = x ∧ xℓℓ ∧ · · · ∧ xℓ2n−2

and γn(x) = x ∨ xℓℓ ∨ · · · ∨ xℓ2n−2

,

are an interior and a closure operator on Fn(Z), respectively; also they both have image equal
to bZ. In particular, Fn(Z) is the convex closure of bZ.

For every n ∈ Z, we denote by n the n-element chain 0 < 1 < . . . < n − 1 and by End(n)
the endomorphisms (i.e., order-preserving maps) on n. End(n) forms a distributive lattice
by pointwise order and a monoid under functional composition, and multiplication distributes
over both join and meet; the resulting distributive lattice-ordered monoid (DLM) is denoted by
End(n).

The n-periodic extensions to Z of the functions in End(n) form a subDLM of Fn(Z), which
we denote by End(n) as well, by abusing notation. We observe that actually this is only one
of the n-many different (overlapping) subDLM of Fn(Z) that are isomorphic to End(n). We
prove that the union of these copies of End(n) in Fn(Z) is equal to the set of flat elements of
Fn(Z), and is contained in the interval [b1−n,bn−1]; an element x of an ℓ-pregroup is called
flat if there exist idempotents y, z such that y ≤ x ≤ z.
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We prove that every element of Fn(Z) can be written as a product of the form xy and of
the form y′x′, where x, x′ ∈ End(n) and y, y′ ∈ bZ; thus, Fn(Z) = End(n) · bZ = bZ · End(n).
Furthermore, we prove that each of these decompositions is unique. However, Fn(Z) is not
isomorphic to the direct product of End(n) and Z, nor even to a semidirect product of them.

Let M and N be monoids, where

• ∗ : M ×N → N a left action of M on N: 1 ∗ n = n and m1 ∗ (m2 ∗ n) = m1m2 ∗ n,

• ⋆ : M ×N → M a right action of N in M: m ⋆ 1 = m and (m ⋆ n1) ⋆ n2 = m ⋆ n1n2,

• m ∗ n1n2 = (m ∗ n1)((m ⋆ n1) ∗m2) and

• m1m2 ⋆ n = (m1 ⋆ (m2 ∗ n))(m2 ⋆ n).

Then N×∗
⋆ M = ⟨N ×M, ◦, ⟨1, 1⟩⟩, where ⟨n1,m1⟩ ◦ ⟨n2,m2⟩ = ⟨n1(m1 ∗ n2), (m1 ⋆ n2)m2⟩,

is a monoid called the Zappa product of N and M with respect to the two actions. Note that
if ⋆ is trivial (m⋆n = m, for all n,m) or ∗ is trivial, then the Zappa product is a (left or right)
semidirect product.

Theorem 1. The monoid reduct of Fn(Z) is isomorphic to the Zappa product End(n) ×∗
⋆ Z,

where bm ⋆a = c and a ∗ bm = bk, and c ∈ End(n) and k ∈ Z are the unique elements such that
bma = cbk.

Now, to describe the order structure of Fn(Z) we describe its poset of join irreducibles. We
define the poset CZ

n := ([0, n− 1]× Z,≤) by: for (m, k), (m′, k′) ∈ [0, n− 1]× Z,

(m, k) ≤ (m′, k′) : ⇐⇒ m−n m′ ≤ (k′ −m′)− (k −m).

As usual for m,m′ ∈ [0, n − 1], m −n m′ (difference modulo n) is equal to m −m′ if m ≥ m′

and to m − m′ + n if m < m′. In particular, m −n m′ ∈ [0, n − 1]. Since 0 ≤ m −n m′, this
definition implies k −m ≤ k′ −m′. Also, we note that the corresponding covering relation is

(m, k) ≺ (m′, k′) : ⇐⇒ m+ 1 = m′ or (m = m′ and k = k′ +n 1).
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Figure 1: The infinite-layered posets CZ
3 and CZ

4 .

Theorem 2. An element of Fn(Z) is join irreducible iff it is meet irreducible. Also, the poset
of join irreducibles of Fn(Z) is isomorphic to CZ

n.

We further define a multiplication on CZ
n by:

(m′, k′) · (m, k) = (m,Sn(k −m′) + k′).

3
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Here, for every n, a ∈ Z, we define Sn(a) := qn, where a = qn + r, 0 ≤ r < n and q, r ∈ Z
are given by the division algorithm; i.e., Sn(a) is the largest whole multiple of n below (and
including) a. Note that (CZ

n, ·) is a semigroup isomorphic to the semidirect product of (Z,+)
and the right-zero semigroup on [0, n− 1], where the action ∗ : [0, n− 1]×Z → Z is defined by
m ∗ k := Sn(k −m).

Theorem 3. The join irreducibles of Fn(Z) form a partially-ordered semigroup that is isomor-
phic to (CZ

n,≤, ·). Also, the join irreducibles of Fn(Z) are closed under the inverses, and the
corresponding operations on CZ

n are:

(m, k)ℓ := (k−n+1−Sn(k−n+1),m−Sn(k−n+1)) and (m, k)r := (k−Sn(k),m+n−1−Sn(k)).

In view of this result the elements of Fn(Z) can be viewed as downsets of CZ
n; then the

lattice operations are simply union and intersection, while multiplication and the inversions is
simply the element-wise lifting of the multiplication and inversions on CZ

n.
In view of Theorem 1 we also provide an analysis of End(n) as a DLM, and of the positive

cones of End(n) and Fn(Z), via their poset of join irreducibles (as a finitary or one-sided
versions of CZ

n), as well as their multiplicative structure in terms of irreducible generators.
The above analysis can be used to prove the following generation result. The periodicity of

an element is defined to be the smallest positive k such that the element is k-periodic.

Theorem 4. Fn(Z) is generated by any one of its elements of periodicity n.

References

[1] W. Buszkowski. Pregroups: models and grammars. Relational methods in computer science, 35–49,
Lecture Notes in Comput. Sci., 2561, Springer, Berlin, 2002.

[2] N. Galatos and I. Gallardo. Distributive ℓ-pregroups: generation and decidability. Journal of
Algebra 648, 2024, 9–35.

[3] N. Galatos and I. Gallardo. Generation and decidability for periodic ℓ-pregroups. accepted in
Journal of Algebra.
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