Varieties of MV-monoids and positive MV-algebras

Marco Abbadini¹, Paolo Aglianò², and Stefano Fioravanti³*

¹ School of Computer Science, University of Birmingham, UK.

m.abbadini@bham.ac.uk

 $^{2}\,$ DIISM, Università di Siena, Italy.

agliano@live.com

Department of Algebra, Charles University Prague, Czech Republic. stefano.fioravanti66@gmail.com

Abstract

We investigate MV-monoids and their subvarieties. An MV-monoid is an algebra $\langle A, \vee, \wedge, \oplus, \odot, 0, 1 \rangle$ where:

- $\langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice;
- $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids;
- \oplus and \odot distribute over \vee and \wedge ;
- for every $x, y, z \in A$,

$$\begin{split} &(x \oplus y) \odot ((x \odot y) \oplus z) = (x \odot (y \oplus z)) \oplus (y \odot z); \\ &(x \odot y) \oplus ((x \oplus y) \odot z) = (x \oplus (y \odot z)) \odot (y \oplus z); \\ &(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \vee z; \\ &(x \oplus y) \odot z = ((x \odot y) \oplus ((x \oplus y) \odot z)) \wedge z. \end{split}$$

Every MV-algebra in the signature $\{\oplus,\neg,0\}$ is term equivalent to an algebra that has an MV-monoid as a reduct, by defining, as standard, $1 := \neg 0$, $x \odot y := \neg (\neg x \oplus \neg y)$, $x \lor y := (x \odot \neg y) \oplus y$ and $x \land y := \neg (\neg x \lor \neg y)$. We study subdirectly irreducible MV-monoids and show that every subdirectly irreducible MV-monoids \mathbf{A} is totally ordered and satisfies property: for all $x, y \in A$, $x \oplus y = 1$ or $x \odot y = 0$.

Furthermore, we investigate the bottom part of the lattice of subvarieties of MV-monoids, characterizing all the almost minimal varieties of MV-monoids as the varieties generated by:

- a reduct of a finite MV-chain of prime order (\mathbf{L}_p^+) ;
- the unique MV-monoid \mathbf{C}_2^{Δ} on the 3-element chain $0 < \varepsilon < 1$ satisfying $\varepsilon \oplus \varepsilon = \varepsilon$ and $\varepsilon \odot \varepsilon = 0$;
- the dual of \mathbf{C}_2^{Δ} .

One of the main tool we used to develop the theory of MV-monoids is the categorical equivalence Γ between unit commutative ℓ -monoids and MV-monoids [1].

A unital commutative ℓ -monoid is an algebra $\langle M, \vee, \wedge, +, 1, 0, -1 \rangle$ with the following properties:

- $\langle M, \vee, \wedge, +, 0 \rangle$ is a commutative ℓ -monoid;
- -1+1=0;
- $-1 \le 0 \le 1$;
- for all $x \in M$ there is $n \in \mathbb{N}$ such that

$$\underbrace{(-1) + \dots + (-1)}_{n \text{ times}} \le x \le \underbrace{1 + \dots + 1}_{n \text{ times}}.$$

^{*}Supported by the PRIMUS/24/SCI/008.

Thus, the relationship between unital commutative ℓ -monoids and MV-monoids is similar to the one between abelian ℓ -groups and MV-algebras and we exploit this fact in several statements of our work.

We also present two versions of Hölder's theorem for unital commutative ℓ -monoids.

Theorem. Let M be a nontrivial totally ordered unital commutative ℓ -monoid. There is a unique homomorphism from M to \mathbb{R} .

Definition. A unital commutative ℓ -monoid \mathbf{M} is *Archimedean* provided that, for all $x, y \in M$, if for all $n \in \mathbb{N}$ we have $nx \leq ny + 1$, then $x \leq y$.

Theorem. (Hölder's theorem for unital commutative ℓ -monoids) Let \mathbf{M} be an Archimedean nontrivial totally ordered unital commutative ℓ -monoid. The unique homomorphism from \mathbf{M} to \mathbb{R} is injective, and so \mathbf{M} is isomorphic to a subalgebra of \mathbb{R} .

Particular examples of MV-monoids are positive MV-algebras, i.e. the $\{\lor, \land, \oplus, \odot, 0, 1\}$ -subreducts of MV-algebras or, equivalently, the proper subquasivariety of the variety of MV-monoids (MVM), axiomatized relatively to MVM by

$$(x \oplus z \approx y \oplus z \text{ and } x \odot z \approx y \odot z) \implies x \approx y.$$

Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent quasivariety semantics of any logic in the sense of [2]. In this cancellative setting, we characterized the varieties of positive MV-algebras.

Theorem. The varieties of positive MV-algebras are precisely the varieties generated by a finite set of finite positive MV-algebras. Equivalently, they are precisely the varieties generated by a finite subset of $\{\mathbf{L}_n^+ \mid n \in \mathbb{N} \setminus \{0\}\}$, where \mathbf{L}_n^+ is the $\{\vee, \wedge, \oplus, \odot, 0, 1\}$ -reduct of the n+1-element MV-chain \mathbf{L}_n .

We also proved that such reducts coincide with the subdirectly irreducible finite positive MV-algebras. Using these results we show that positive MV-algebras form an unbounded sublattice of the lattice of all subvarieties of MVM.

Indeed, we prove that: a variety of positive MV-algebras is of the form $\mathcal{V}(\mathcal{K}_I)$, where I is a finite subset of \mathbb{N} containing all the divisors of its elements (divisor-closed subsets)

Theorem. The set $\Lambda(MV^+)$ of varieties of positive MV-algebras is in bijection with the set \mathcal{J} of divisor-closed finite sets, as witnessed by the inverse functions:

$$\begin{split} f \colon \mathcal{J} &\longrightarrow \Lambda(\mathsf{MV}^+) \\ I &\longmapsto \mathcal{V}(\mathcal{K}_I) \end{split} \qquad g \colon \Lambda(\mathsf{MV}^+) \longrightarrow \mathcal{J} \\ \mathcal{V} &\longmapsto \{n \in \mathbb{N} \setminus \{0\} \mid \mathbf{L}_n^+ \in \mathcal{V}\}. \end{split}$$

where we denote by K_I is the set of all reducts of MV-chains with cardinality in I.

Furthermore, we present axiomatizations of all varieties of positive MV-algebras, using a strategy similar to that of Di Nola and Lettieri [3]. To do so, we define the following set of equations.

Let $I \subseteq \mathbb{N}$ be a divisor-closed set, and let m be the maximum of I (with the convention that m = 0 if $I = \emptyset$). We define Σ_I as the set of equations given by the single equation

$$(m+1)x \approx mx \tag{1}$$

union the equations of the form

$$m((k-1)x)^k \approx (kx)^m \tag{2}$$

for all $1 \le k \le m$ such that $k \notin I$.

For $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ we define the unary term $\tau_{n,k}(x)$ inductively on n as follows:

$$\tau_{0,k}(x) := \begin{cases} 1 & \text{if } k \le -1, \\ 0 & \text{if } k \ge 0. \end{cases}$$

$$\tau_{n+1,k}(x) = \tau_{n,k-1}(x) \odot (x \oplus \tau_{n,k}(x)),$$

For every $n \in \mathbb{N}$, let Φ_n be the following set of equations, for k ranging in $\{0, \ldots, n-1\}$:

$$\tau_{n,k}(x) \oplus \tau_{n,k}(x) \approx \tau_{n,k}(x) \text{ and } \tau_{n,k}(x) \odot \tau_{n,k}(x) \approx \tau_{n,k}(x).$$
(3)

Theorem. Let I be a divisor-closed finite set; then $\mathcal{V}(\mathcal{K}_I)$ is axiomatized by $\Phi_{\text{lcm}(I)} \cup \Sigma_I$ relatively to the variety of MV-monoids, where \mathcal{K}_I is the set of all reducts of MV-chains with cardinality in I.

To conclude, in the following table we summarize our axiomatizations of the almost minimal varieties of MV-monoids and the varieties of positive MV-algebras.

Variety	Axiomatization (within MV-monoids)
$\mathcal{V}(\mathbf{C}_2^{\Delta})$	$x \oplus x \approx x$
$\mathcal{V}(\mathbf{C}_2^{ abla})$	$x \odot x \approx x$
$\mathcal{V}(\mathbf{L}_1^+)$	$x \oplus x \approx x \text{ and } x \odot x \approx x$
$\mathcal{V}(\mathbf{L}_n^+)$	$\tau_{n,k}(x) \oplus \tau_{n,k}(x) \approx \tau_{n,k}(x)$ (for $0 \le k \le n-1$)
	$\tau_{n,k}(x) \odot \tau_{n,k}(x) \approx \tau_{n,k}(x)$ (for $0 \le k \le n-1$)
	(setting $l := \operatorname{lcm} I$ and $m := \max I$)
(I divclosed fin. set)	$\tau_{l,k}(x) \oplus \tau_{l,k}(x) \approx \tau_{l,k}(x)$ (for $0 \le k \le l-1$)
	$ \tau_{l,k}(x) \odot \tau_{l,k}(x) \approx \tau_{l,k}(x)$ (for $0 \le k \le l-1$)
	$(m+1)x \approx mx$
	$m((k-1)x)^k \approx (kx)^m \text{ (for } 1 \le k \le m \text{ s.t. } k \notin I)$

References

- [1] M. Abbadini. Equivalence à la Mundici for commutative lattice-ordered monoids. Algebra Universalis, 82(3), 2021.
- [2] G. D. Barbour and J. G. Raftery. Quasivarieties of logic, regularity conditions and parameterized algebraization. *Studia Logica*, 74(1/2):99–152, 2003.
- [3] A. Di Nola and A. Lettieri. Equational characterization of all varieties of MV-algebras. *J. Algebra*, 221(2):463–474, 1999.