Strong completeness for the predicate logic of the continuous t-norms Diego Castaño^{1,2}, José Patricio Díaz Varela^{1,2}, and Gabriel Savoy^{1,2} ¹Departamento de Matemática, Universidad Nacional del Sur (UNS), Argentina ²Instituto de Matemática (INMABB), Universidad Nacional del Sur (UNS) - CONICET, Argentina January 30, 2025 ## Abstract The axiomatic system introduced by Hájek axiomatizes first-order logic based on BL-chains. In this study, we extend this system with the axiom $(\forall x\phi)^2 \leftrightarrow \forall x\phi^2$ and the infinitary rule $$\frac{\phi \vee (\alpha \to \beta^n) : n \in \mathbb{N}}{\phi \vee (\alpha \to \alpha \& \beta)}$$ to achieve strong completeness with respect to continuous t-norms. In Mostowski (1961), the author proposed the study of first-order many-valued logics interpreting universal and existential quantifiers as infimum and supremum, respectively, on a set of truth values. From the 1963 article by Hay (1963), it follows that the infinitary rule $$\frac{\phi \oplus \phi^n : n \in \mathbb{N}}{\phi}$$ can be added to the first-order Łukasiewicz calculus to obtain weak completeness with respect to the Łukasiewicz t-norm. Horn (1969) later axiomatized first-order Gödel logic in 1969. Hájek (1998) provided a general approach to first-order fuzzy logic, introducing a syntactic logic, denoted by BL∀, which is strongly complete with respect to models based on BL-chains. However, the problem of finding an appropriate syntactic logic for models based on continuous t-norms remained unresolved. In the propositional case, Hájek (1998) exhibited a syntactic logic that is strongly complete with respect to valuations on BL-chains. Kułacka (2018) later proved that by adding the infinitary rule $$\frac{\phi \vee (\alpha \to \beta^n) : n \in \mathbb{N}}{\phi \vee (\alpha \to \alpha \& \beta)}$$ to the syntactic logic, a strong completeness result can be achieved with respect to valuations on t-norms. In the first-order case, quantifiers can exhibit distinct behaviors in a continuous t-norm compared to a generic BL-chain. For example, the sentence, $$\forall x(\phi \& \phi) \to ((\forall x \phi) \& (\forall x \phi)) \tag{RC}$$ is true in models based on continuous t-norms and is not true in general. Moreover, Hajek and Montagna (2008) demonstrated that standard first-order tautologies coincide with first-order tautologies over complete BL-chains satisfying (RC). In this paper we show that by adding Kułacka's Infinitary Rule and Hájek and Montagna's axiom RC to BL∀, a strong standard completeness result can be proven for models based on continuous t-norms. Thus, this paper aims to contribute to the study of first-order extensions of propositional logics, such as Badia et al. (2023), Cintula et al. (2015), and Hajek and Montagna (2008). We introduce our logic extending the logic BL \forall with an additional axiom and an infinitary rule and utilize a Henkin construction to demonstrate that for a given theory Γ and a sentence ϕ such that $\Gamma \nvdash \phi$, there exists an expanded theory Γ^* that also satisfies $\Gamma^* \nvdash \phi$ and possesses additional properties (Henkin property and *prelinearity*) necessary for the subsequent construction of a desirable Lindenbaum algebra. Then, a Lindenbaum algebra is constructed and embedded in a continuous t-norm, with the help of a new version of a weak saturation result, providing the final prerequisite for the strong completeness theorem. ## References - Badia, G., Fagin, R., and Noguera, C. (2023). New foundations of reasoning via real-valued first-order logics. - Cintula, P., Fermüller, C., and Noguera, C., editors (2015). *Handbook of Mathematical Fuzzy Logic Volume 3*. College Publications. - Hájek, P. (1998). Metamathematics of fuzzy logic, volume 4 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht. - Hajek, P. and Montagna, F. (2008). A note on the first-order logic of complete bl-chains. *Mathematical Logic Quarterly*, 54:435–446. - Hay, L. S. (1963). An axiomatization of the infinitely many-valued predicate calculus. Master's thesis, Cornell University. - Horn, A. (1969). Logic with truth values in a linearly ordered heyting algebra. *Journal of Symbolic Logic*, 34:395–409. - Kułacka, A. (2018). Strong standard completeness for continuous t-norms. Fuzzy Sets and Systems, 345:139–150. - Mostowski, A. (1961). Axiomatizability of some many valued predicate calculi. Fundamenta mathematicae, 50:165–190.