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via Cesare Saldini 50, 20133 Milan, Italy

luca.carai.uni@gmail.com

Free Heyting algebras play a fundamental role in the study of the intuitionistic propositional
calculus IPC because they arise as Lindenbaum-Tarski algebras, whose elements are equivalence
classes of propositional formulas over a fixed set of variables modulo logical equivalence in IPC.
Esakia duality (see [10]) proved to be a powerful tool for understanding the structure of free
Heyting algebras, which are notoriously difficult to describe. Recall that a Stone space is a
topological space that is compact, Hausdorff, and has a basis consisting of clopen (i.e., closed
and open) subsets.

Definition 1. An Esakia space is a Stone space X equipped with a partial order ≤ such that

(i) ↑x := {y ∈ X : x ≤ y} is closed for every x ∈ X,

(ii) ↓V := {x ∈ X : x ≤ y for some y ∈ V } is clopen for every V ⊆ X clopen.

Every Esakia space X gives rise to the Heyting algebra ClopUp(X) of the clopen upsets of X
ordered by inclusion, where U ⊆ X is an upset if ↑x ⊆ U for every x ∈ U . Vice versa, the prime
spectrum Spec(H) of a Heyting algebra H, which is the set of the prime filters of H, becomes an
Esakia space once ordered by inclusion and suitably topologized. This correspondence extends
to Heyting homomorphisms between Heyting algebras and continuous p-morphisms between
Esakia spaces, where f : X → Y is a p-morphism if f [↑x] = ↑f(x) for every x ∈ X.

Theorem 2 (Esakia duality). The category of Heyting algebras and Heyting homomorphisms
is dually equivalent to the category of Esakia spaces and continuous p-morphisms.

Different methods to study the Esakia duals of free Heyting algebras have been developed.
Universal models, first investigated in [4, 19], describe the points of finite depth of the Esakia
duals of finitely generated free Heyting algebras (see, e.g., [5, Sec. 3]). A different approach,
known as the step-by-step method and developed in [12,20], builds the Esakia duals of finitely
generated free Heyting algebras as the inverse limits of systems of finite posets. This approach
has been recently generalized beyond the finitely generated setting [2]. However, due to the
complexity of free Heyting algebras, obtaining a tangible and complete description of their
Esakia duals seems difficult—if not impossible—particularly for those that are free over infinitely
many generators. This naturally leads us to consider free algebras in subvarieties of the variety
of Heyting algebras. We will turn our attention to free Gödel algebras.

Definition 3. A Gödel algebra is a Heyting algebra satisfying the prelinearity axiom
(x → y) ∨ (y → x) = 1.

The variety GA of Gödel algebras is generated by the totally ordered Heyting algebras and
provides the algebraic semantics for the superintuitionistic propositional logic known as the
Gödel-Dummett logic [8]. This logic has attracted much attention, partly because it can also
be regarded as a fuzzy logic (see, e.g., [3] and [18, Sec. 4.2]).

It is well known that Esakia duality restricts to a duality for Gödel algebras. An Esakia
space X is called an Esakia root system if the order ≤ on ↑x is total for every x ∈ X.
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Proposition 4. The category of Gödel algebras and Heyting homomorphisms is dually equiv-
alent to the category of Esakia root systems and continuous p-morphisms.

As all finitely generated Gödel algebras are finite [16], GA is a locally finite variety. The
Esakia duals of finitely generated free Gödel algebras were described in [13], while the Esakia
duals of Gödel algebras free over finite distributive lattices1 were described in [1].

Definition 5. A Gödel algebra G is said to be free over a distributive lattice L via a lattice
homomorphism e : L → G when the following holds: for every Gödel algebra H and lattice
homomorphism f : L → H, there is a unique Heyting homomorphism g : G → H such that
g ◦ e = f .

G H

L

∃! g

f
e

Our main result generalizes the descriptions of [1] beyond the finitely generated setting
by providing a dual description of Gödel algebras free over distributive lattices, without any
restriction on the cardinality of the lattice. As a consequence, we obtain a dual description of
free Gödel algebras over any set of generators that generalizes the one of [13]. To provide such
a description, we first recall Priestley duality for distributive lattices (see, e.g., [11]).

Definition 6. A Priestley space is a Stone space X equipped with a partial order ≤ satisfying
the Priestley separation axiom: if x, y ∈ X with x ≰ y, then there is a clopen upset U such
that x ∈ U and y /∈ U .

The functors ClopUp and Spec generalize to a correspondence between Priestley spaces and
distributive lattices, yielding Priestley duality

Theorem 7 (Priestley duality). The category of distributive lattices and lattice homomorphisms
is dually equivalent to the category of Priestley spaces and continuous order-preserving maps.

We are now ready to describe the construction dual to taking the free Gödel algebra over a
distributive lattice. Let X be a Priestley space. A chain (i.e., a totally ordered subset) of X
is said to be closed when it is closed in the topology on X. We denote by CC(X) the set of all
nonempty closed chains of X. Equip CC(X) with the Vietoris topology, which is generated by
the subbasis {2V,3V | V clopen of X}, where

2V := {C ∈ CC(X) | F ⊆ V } and 3V := {C ∈ CC(X) | F ∩ V ̸= ∅}.

Define a partial order � on CC(X) by setting C1 � C2 iff C2 is an upset inside C1.
The following is our main result, characterizing the Esakia duals of free Gödel algebras over

distributive lattices.

Theorem 8.

1. If X is a Priestley space, then CC(X) is an Esakia root system.

2. Let L be a distributive lattice and X its Priestley dual. Then the Gödel algebra dual to
CC(X) is free over L.

1All lattices will be assumed to be bounded and lattice homomorphisms to preserve the bounds.
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Let 2 be the Priestley space consisting of the 2-element chain with the discrete topology. It
is well known that for a set S, the ordered topological space 2S with the product topology and
componentwise order is a Priestley space, and that its dual distributive lattice is free over the
set S. As a consequence of this observation and Theorem 8, we obtain a dual description of
free Gödel algebras.

Corollary 9. Let S be a set. Then the Gödel algebra dual to CC(2S) is free over the set S.

While products of Priestley spaces are simply cartesian products, the products in the cate-
gory of Esakia spaces are difficult to describe. Consequently, computing coproducts of Heyting
algebras is a nontrivial task. A generalization of the construction of universal models was em-
ployed in [14] to study the finite depth part of the product of two finite Esakia spaces, and the
step-by-step method has been employed in [2] to obtain a dual description of binary products
of Esakia spaces. We adapt our machinery to describe arbitrary products in the category of
Esakia root systems, generalizing the description of binary products of finite Esakia root sys-
tems from [7]. As a consequence of Esakia duality, we obtain a dual description of coproducts
of any family of Gödel algebras without restrictions on the cardinalities of the family and of its
members.

Definition 10. Let {Yi | i ∈ I} be a family of Esakia root systems. Let
∏

i Yi denote the
cartesian product with the componentwise order and product topology, and πi :

∏
i Yi → Yi the

projection onto the i-th component. We define⊗
i∈I

Yi := {C ∈ CC
(∏

iYi

)
| πi[C] is an upset of Yi for every i ∈ I}

and equip it with the subspace topology and order induced by CC
(∏

i Yi

)
.

Theorem 11.

1. Let {Yi | i ∈ I} be a family of Esakia root systems. Then
⊗

i∈I Yi is their product in the
category of Esakia root systems.

2. Let {Gi | i ∈ I} be a family of Gödel algebras and Yi their Esakia duals. Then
⊗

i Yi is
dual to the coproduct of {Gi | i ∈ I} in GA.

The proper subvarieties of GA form a countable chain of order type ω, and each of them is
axiomatized over GA by a bounded depth axiom [9, 15] (see [17] for the corresponding charac-
terization of the extensions of the Gödel-Dummett logic). We denote by GAn the subvariety of
GA consisting of all the Gödel algebras validating the bounded depth n axiom, and we refer to
its members as GAn-algebras. Replacing CC(X) with its subspace CCn(X), consisting of the
nonempty chains in X of size at most n, yields analogues of Theorems 8 and 11 that provide
dual descriptions of free GAn-algebras over distributive lattices and of coproducts in GAn.

A Heyting algebra is called a bi-Heyting algebra if its order dual is also a Heyting algebra.
The step-by-step method allows to show that every Heyting algebra free over a finite distributive
lattice is a bi-Heyting algebra [12]. Using Theorem 8, we provide a characterization of the Gödel
algebras free over distributive lattices that are bi-Heyting algebra. As a consequence, we deduce
that free Gödel algebras are always bi-Heyting algebras. Surprisingly, we also show that the
situation is very different for free GAn-algebras.
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Theorem 12.

1. Let G be a Gödel algebra free over a distributive lattice L. Then G is a bi-Heyting algebra
iff the order dual of L is a Heyting algebra.

2. All free Gödel algebras are bi-Heyting algebras.

3. A free GAn-algebra is a bi-Heyting algebra iff it is finitely generated, and hence finite.

These results have been collected in the manuscript [6].
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[18] P. Hájek, Metamathematics of fuzzy logic, Trends in Logic, Springer Netherlands, 1998.

[19] V. B. Shehtman, Reiger-Nishimura ladders, Dokl. Akad. Nauk SSSR 241 (1978), no. 6, 1288–1291.

[20] A. Urquhart, Free Heyting algebras, Algebra Universalis 3 (1973), 94–97.

4


