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Simplicial complexes are a well-known semantic framework in combinatorial topology to model
synchronous and asynchronous distributed systems. A common type of faults considered in syn-
chronous computation is crash failures. In a system with crash failures, each live process may be
uncertain regarding which of the other processes have already crashed. In simplicial complexes,
this is modeled semantically by considering so-called impure simplicial complexes. In this extended
abstract, we discuss which object language is appropriate and expressive enough to reason about
synchronous distributed systems with crash failures using the impure simplicial semantics.

Epistemic logic investigates knowledge and belief, and change of knowledge and belief, in
multi-agent systems [5, 9, 16]. Knowledge change was extensively modeled in temporal epistemic
logics [8, 13, 20] and in dynamic epistemic logics [1, 7, 19]. Epistemic logical semantics is often
based on Kripke models, that consist of an abstract domain of global states, or worlds, between
which binary relations of accessibility (or indistinguishability, depending on the agents’ epistemic
strength) are defined, one for each agent [17].

Combinatorial topology [14] has been used in distributed computing to model concurrency
and asynchrony since [3, 10, 18], including higher-dimensional topological properties [15, 22]. Ge-
ometric manipulations such as subdivision have natural combinatorial counterparts. Simplicial
models consist of an abstract set of vertices representing agents’ local states. These agent-colored
vertices are combined into sets called simplices, with a standard chromatic restriction that each
simplex contain no more than one vertex per agent. Global states of the system correspond to
those simplices that are maximal with respect to set inclusion and are called facets. Pure simpli-
cial complexes correspond to distributed systems without crashes, hence, require that each facet
contain exactly one vertex for each of the agents. Crashed agents are modeled by allowing facets to
have fewer vertices than the total number of agents, with the understanding that all agents missing
from a facet are dead, i.e., have crashed, whereas all agents present in the facet (as a single vertex)
are alive. The collection of sets of vertices (simplices) in a given simplicial model is assumed to
be downward closed with respect to set inclusion, with the exception of the empty set. Proper
subsets of any facet are called faces and can be viewed as partial global states of the system.

In lieu of giving a lengthy formal definition [6], in Fig. 1 we provide examples of one pure (C1)
and two impure (C2 and C3) simplicial models for a distributed system with three agents a, b, and c:

Each model Ci consists of two facets Xi and Yi (global states) that agent a cannot distinguish,
as evidenced by its vertex (local state) 0a belonging to both. Model C1 is pure because its two
facets (two gray triangles) X1 and Y1 consist of three vertices (one per agent) each. Thus, a is sure
that all agents are alive and knows the value of b’s variable as it is true (depicted as 1b) in both
X1 and Y1. On the other hand, a does not know the truth value of c’s variable as it is false (0c)
in X1 and true (1c) in Y1. Models C2 and C3 are impure because each contains at least one facet
with strictly less than three agents: agent c is dead in X2 of C2 and in X3 of C3, and, additionally,
agent b is dead in Y3 of C3. Note that facets X2, X3, and Y3 in the impure models C2 and C3 are
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Figure 1: Impure and pure simplicial models

edges that can also be found in the pure model C1. However, there the corresponding edges are
sides of triangles, or in simplicial complex terms, are faces of larger facets X1 and Y1, without
being facets themselves. In both C2 and C3, agent a is unsure whether c is alive (and, additionally,
whether b is alive in C3).

Note that we have already smuggled a small change from the standard logical language in the
form of local propositional variables pa, pb, qb, etc. They originate from the notion of an agent’s
local state in distributed systems, which is always known by the agent. Thus, a propositional
variable pa pertaining to the local state of a should be known by a, as formalized by the locality
axiom Kapa ∨Ka¬pa where modality Ka represents agent a’s knowledge [6, 11]. Local variables
represent a natural but not the only choice. A logic of impure simplicial complexes with standard
propositional variables that are unattached to any agent (global) can be found, e.g., in [12].

We believe that a proper logic for distributed systems should include both types of variables:
local variables for describing agents’ local states and global variables describing global properties
of the system that need not be known to any agent. For instance, asynchronous systems are
typically modeled to have global time that no agent has access to, making this global time a good
example of a global variable that does not belong to any agent and is, generally, not known by
any agent. Logically, this would be realized by applying the locality axiom to local variables only.

The dichotomy of local and global variables is not the only choice that has been considered.
Another non-trivial question regards the effect agents’ crashes have on the knowledge of live agents,
in particular, on their knowledge of the local variables of crashed agents. Consider again impure
models C2 and C3 in Fig. 1. Does agent a know the value of, say, b’s variable pb there? The only
obvious answer is that the value of pb is known in C2 as it is true in both X2 and Y2.

But what happens with pb in facet Y3 of model C3? And what does a know about it in
facet X3? Were pb a global variable, as in [12], its truth value would have been determined by
the whole facet Y3, and the crash of agent b would not affect it. On the other hand, there is
no universally acceptable way of assigning a truth value to a local variable pb in facet Y3. This
prompted the introduction of the third truth value ‘undefined’ in [6]. Propositionally, this value
is treated according to the 3-valued Weak Kleene Logic, with the undefined value “infecting” any
propositional formula it participates in. The question about knowledge in presence of undefined
values is more subtle. In global state X3 of model C3, given that pb is undefined in Y3, (i) should a
know pb to be true based on X3 alone, the sole facet where pb is defined or (ii) should a not
know pb to be true because it is not true in Y3, which a considers possible? Both options may
seem reasonable at first but option (ii) has an undesirable consequence for the dual modality

K̂a := ¬Ka¬, which stands for a considers it possible. Indeed, if C3, X3 ⊭ Kapb according to (ii),

then C3, X3 ⊨ K̂a¬pb, i.e., agent a would have consider it possible that pb is false despite it not
being false in any facet of C3. This consideration explains why option (i) was chosen in [6]. It
should be noted that the resulting logic is different from the way modalities work in [4].

The resulting epistemic logic of impure simplicial complexes, based on 3-valued Weak Kleene
Logic on the propositional level and with local variables only, was axiomatized in [21]. The
difficulty was that, as we soon discovered [2], it did not satisfy the Hennessy–Milner property
for the natural notion of bisimulation. Worse than that, we have shown that no reasonable local
definition of bisimulation relying on the standard back-and-forth relations would have Hennessy–
Milner [21].

A failure of Hennessy–Milner often means that the language is not expressive enough. And
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the property lacking expressivity in terms of local variables only was quite obvious. Above, while
we used the term “know”, corresponding to the Ka modality for local variables, we resorted to “is
sure that” regarding agents being alive or dead. The reason for this was that the latter was not
expressible in the language with local variables only [2]. Hence, using “know” would have been
misleading. Since one of the objectives in a distributed systems with crash failures is to reason in
presence of crash failures, a language not expressive enough to talk about these crash failures in
the object language is suboptimal.

Thus, based both on the desired applications and on the logical evidence of insufficient ex-
pressivity, we believe that the object language for the logic of impure simplicial complexes should
include both local and global variables and that these global variables should, at the minimum,
include atoms expressing that a particular agent is alive. In [2], we have shown that the logic with
such atoms a for each agent a does indeed possess the Hennessy–Milner property. We are currently
preparing for submission a manuscript with a complete axiom system for this logic, which extends
that from [21] for local variables only.
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[14] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing through Combinatorial Topology.
Morgan Kaufmann, 2014. doi:10.1016/C2011-0-07032-1.

[15] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal of the
ACM, 46(6):858–923, November 1999. doi:10.1145/331524.331529.

[16] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell
University Press, 1962.

[17] S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–14, March
1959. doi:10.2307/2964568.

[18] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. In F. P. Preparata, editor, Parallel and Distributed Computing, volume 4 of
Advances in Computing Research: A Research Annual, pages 163–183. JAI Press, 1987.

[19] L. S. Moss. Dynamic epistemic logic. In H. van Ditmarsch, J. Y. Halpern, W. van der Hoek, and
B. Kooi, editors, Handbook of Epistemic Logic, pages 261–312. College Publications, 2015.

[20] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, pages 46–57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

[21] R. Randrianomentsoa, H. van Ditmarsch, and R. Kuznets. Impure simplicial complexes: Complete
axiomatization. Logical Methods in Computer Science, 19(4):3:1–3:35, October 2023. doi:10.46298/
lmcs-19(4:3)2023.

[22] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of pub-
lic knowledge. SIAM Journal on Computing, 29(5):1449–1483, January 2000. doi:10.1137/

S0097539796307698.

4

https://doi.org/10.1016/C2011-0-07032-1
https://doi.org/10.1145/331524.331529
https://doi.org/10.2307/2964568
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.46298/lmcs-19(4:3)2023
https://doi.org/10.46298/lmcs-19(4:3)2023
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698

	References

