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Medvedev logic, or the logic of finite problems, is a well-known intermediate logic first intro-
duced by the Russian mathematician Medvedev in his 1963 article [10]. It may be semantically
defined as the logic of the Kripke frames {(Subn∖{∅},⊇)}n∈N, i.e. the powersets Subn of finite
non-empty sets ordered by reverse inclusion, with the empty subset removed. For background
and references on Medvedev logic we refer to [5]. By the Medvedev variety we mean the subva-
riety of Heyting algebras corresponding to Medvedev logic, i.e. the closure under homomorphic
images, subalgebras, and products of the Heyting algebras of upper-closed subsets of the posets
{(Subn∖{∅},⊇)}n∈N.

Connections between Medvedev logic and cellular structures—notably, simplicial comple-
xes—have long been known among specialists.1 Indeed, the Medvedev frame (Subn∖{∅},⊇)
is the poset of faces of an n-dimensional simplex ordered by reverse inclusion. The aim of
this contribution is to initiate a systematic investigation of such connections. We discuss here
two categories of central importance in combinatorial geometry, finite simplicial complexes
and simplicial sets; in the manuscript [3], currently in preparation, we offer a more extensive
treatment including, among others, ordered and infinite complexes, ∆-sets, and symmetric
simplicial sets. It is to be hoped that these semantics based on combinatorial geometry may
eventually become a further tool to tackle questions about Medvedev logic, which is notoriously
difficult to analyse.

Simplicial Complexes
A classical treatment of simplicial complexes is [2]; for a contemporary account, see e.g. [6].

A (finite) simplicial complex Σ on the set of vertices V is a set of subsets of the finite set
V such that the following conditions are satisfied.

1. Each member of Σ is non-empty.

2. For each v ∈ V , {v} ∈ Σ.

3. For each σ ∈ Σ and for each ∅ ≠ τ ⊆ σ, τ ∈ Σ.

Let us write vrtΣ for the set of vertices of Σ. For simplicial complexes Σ and ∆, a simplicial
map Σ → ∆ is a function f : vrtΣ −→ vrt∆ such that f [σ] ∈ ∆ holds for each σ ∈ Σ,
where f [−] denotes the direct image along f . Simplicial complexes and simplicial maps form a
category S.
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Subobjects of an object Σ of S are known as subcomplexes of Σ; they may be identified with
the simplicial complexes ∆ on some set of vertices W ⊆ vrtΣ such that δ ∈ Σ for each δ ∈ ∆.
We write SubΣ for the set of subcomplexes of the complex Σ. It is elementary that SubΣ under
inclusion order is a finite distributive lattice with top Σ and bottom the empty subcomplex. It
follows SubΣ has a unique structure of Heyting algebra. Write M for the full subcategory of
Heyting algebras on those algebras isomorphic to SubΣ for some simplicial complex Σ. The
subobject functor

Sub: S −→ Mop (1)

acts contravariantly on simplicial maps f : Σ → ∆ by inverse images (pullback of subobjects
along f) in the standard manner. It is not difficult to prove Sub is part of a dual equivalence of
categories. The explicit description of the adjoint Mop → S, also not difficult, is conceptually
interesting in that it features the representation of simplicial complexes as a category of finite
spaces and open maps; we omit details for reasons of space, and state our first result as:

Theorem 1. The functor (1) is part of a dual equivalence of categories between S and M.
Moreover, the variety generated by the class of objects of M is the Medvedev variety, and so the
logic of the category S of finite simplicial complexes is Medvedev logic.

Presheaf Toposes
For background on topos theory, and on presheaf toposes in particular, please see e.g. [8].
A presheaf category is a category whose objects are presheaves on a small category C, i.e.
contravariant functors from C to Set, and whose maps are natural transformations between
them. We denote by Ĉ the category of presheaves on C. A subpresheaf G of F in Ĉ is a
subobject in the presheaf category, namely a class, up to isomorphism, of a monomorphism
from G to F . Since a presheaf category turns out to be an elementary topos, it is also referred
to as a presheaf topos.

A general fact concerning toposes is that, given an arbitrary topos E and an object X in it,
the set of subobjects SubX of X can be equipped with a natural structure of Heyting algebra.
In case the topos is a presheaf category, for every presheaf F the Heyting algebra SubF is
complete, being the identity on F the top and the natural transformation from the terminal
functor to F the bottom.

We will provide a criterion that is helpful in identifying the intermediate logic determined
by certain presheaf toposes. By definition, the intermediate logic determined by an arbitrary
topos E is the logic uniquely associated with the variety generated by the class of Heyting
algebras SubX, as X ranges over all objects of E . This coincides with the intermediate logic
of all fomulæ valid in the internal Heyting algebra structure of the subobject classifier of E ,
though we will not detail this fact here.

For presheaves, matters simplify. By standard general theory, the intermediate logic of a
presheaf topos Ĉ is determined by subobjects of the representable functors only, i.e. by the
Heyting algebras Sub (hom(−, X)); the elements of such algebras may in turn be identified
with sieves on the object X. Building on this, Ghilardi in [7] showed how to construct out of
the slice categories C/X a Kripke frame whose logic coincides with that of Ĉ.

Moreover, we observe that if C admits a specific factorisation system then the Heyting
algebras of subobjects of representable functors are determined by the posets of subobjects
in the site C. Recall a split epimorphism (also called a retraction) in a category is an arrow
r : a → b such that there exists a section s : b → a with r ◦ s the identity on b. The category C
has (split epi/mono) factorisations if each arrow in C factors as a split epimorphism followed
by a monomorphism. We prove:
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Theorem 2. Let C be a small category with (split epi/mono) factorisations. Then for every
object X there is an isomorphism of Heyting algebras

Sub (hom (−, X)) ∼= Down (SubX). (*)

The right-hand side of (*) denotes the Heyting algebra of all downward-closed subsets of the
poset SubX.

Hence, under the hypotheses of Theorem 2, the intermediate logic of a presheaf topos Ĉ is
the logic of the opposites of the posets of subobjects (SubX)op, as X ranges over objects of C.

Simplicial Sets
We finally turn to the presheaf topos of simplicial sets. Any simplicial complex equipped with a
partial order of its vertices that is linear on each simplex determines a simplicial set in a natural
manner. In this sense simplicial sets provide a generalisation of (ordered) simplicial complexes.
In fact, simplicial sets are considerably more general than simplicial complexes under several
respects. Nonetheless, the intermediate logic of the presheaf topos of simplicial sets is once
again Medvedev logic. For background on simplicial sets we refer e.g. to [9, 6, 8].

The category SSet of simplicial sets is the presheaf topos on the simplex category △, namely
the category of finite non-empty ordinals with morphisms the monotone functions. We denote
by [n] the object of △ given by the totally ordered set with n+ 1 elements.

It is well known, and not hard to prove, that the simplex category △ admits (split epi/mono)
factorizations (for details see e.g. [9]), so Theorem 2 applies. As a consequence, we infer the
intermediate logic of simplicial sets is the one determined by the posets (Sub [n])op, as n ranges
over non-negative integers. But subobjects of [n] (equivalence classes of monomorphisms in
△ with codomain [n]) are uniquely determined by their set-theoretic images, which are the
non-empty subsets of a set with n+ 1 elements.

These considerations lead to the following theorem:

Theorem 3. The intermediate logic determined by the presheaf topos SSet is Medvedev logic.

Final remark. In [1] and [4], as well as in a further forthcoming paper, the third-named author
introduced and studied in collaboration with several co-authors the intermediate logic associated
to classes of compact polyhedra. Without entering details, it is important to emphasise that in
the framework of that research the logic determined by a simplicial complex is defined as the
logic of the poset of simplices ordered by inclusion, as opposed to the reverse inclusion adopted
in the present abstract. The overall picture then changes altogether. For example, it is proved
in [4] that the logic of all simplicial complexes (under inclusion of simplices) is full intuitionistic
logic, in stark contrast to Theorem 1.
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