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In [1] Hamkins and Löwe investigate how the set theoretical method of forcing between
models of set theory affects the corresponding theory of a model. The method of forcing, which
has become a fundamental tool in set theory, was first introduced by Paul Cohen in 1962 in
order to prove the indepence of the Axiom of Choice and the Continuum Hypothesis from the
other axioms of set theory. Since then, this method has widely been used to construct a huge
variety of models of set theory and prove many other independence results.

With forcing one builds an extension of any model of set theory using algebraic tools; the
resulting forcing extension will be another model which is closely related to the original one,
but may exhibit different set theoretical truths in a way that can often be carefully controlled.
Since the ground model has some access, via the forcing relation, to the truths of the forcing
extension, there are clear affinities between forcing and modal logic. In fact, one can even
consider the collection of all models of set theory, where the accessibility relation is induced by
forcing, as an enormous Kripke model. Following this strategy, they define that a statement
of set theory ϕ is possible if it holds in some forcing extension and necessary if it holds in all
forcing extensions; the modal notations 3ϕ and 2ϕ express respectively that ϕ is possible and
necessary.

More specifically, a modal assertion is a formula of propositional modal logic, which is
expressed with propositional variables pi, the usual Boolean connectives ∧, ∨, ¬, →, ⇐⇒ and
the modal operators 2, 3. The notation ϕ(p0, ..., pn) is used to denote a modal assertion whose
propositional variables are among p0,...,pn. A modal assertion ϕ(p0, ..., pn) is a valid principle
of forcing if for all sentences ψi in the language of set theory, ϕ(ψ0, ..., ψn) holds under the
forcing interpretation of 2 and 3. We say that ϕ(p0, ..., pn) is a ZFC provable principle
of forcing if ZFC proves all the substitution instances ϕ(ψ0, ..., ψn). In their paper, Hamkins
and Löwe prove that if ZFC is consistent, then the ZFC-provably valid principles of forcing are
exactly the assertions of the well-known modal logic S4.2: this is what the authors of [1] mean
when they assert that the modal logic of forcing is S4.2.

A natural extension of the problem introduced by Hamkins and Löwe was presented in [2]:
the key idea of this paper is to consider a class of structures C endowed with a binary relation
⊑ which is interpreted as accessibility: given M, N ∈ C, the notation M ⊑ N is used to state
that M accesses N. Clearly, this gives (C,⊑) the structure of a Kripke frame, whose Kripke
models we can study. It is then natural to study the modal logic this interpretation gives rise
to.

First of all, we consider the case in which C is generic. Let C be any class and ⊑ be a
definable binary class relation on C. We consider (C,⊑) as a Kripke frame; a valuation is a
function v : Prop × C → {0, 1} (where we denote by Prop the set of propositional variables)
and a Kripke model is a triple (C,⊑, v). The Kripke semantics for the language L2 of modal
logic can be easily defined. If M ∈ C, then:

C,⊑, v,M |= p if and only if v(p,M) = 1 (if p is a propositional variable);

C,⊑, v,M |= ϕ ∧ ψ if and only if C,⊑, v,M |= ϕ and C,⊑, v,M |= ψ;

C,⊑, v,M |= ¬ϕ if and only if C,⊑, v,M ̸|= ϕ;
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C,⊑, v,M |= 2ϕ if and only if for all N ∈ C such that M ⊑ N we have C,⊑, v,N |= ϕ.

A modal formula ϕ is valid in a Kripke model (C,⊑, v) if for every M ∈ C we have
C,⊑, v,M |= ϕ. A modal formula ϕ is valid in a Kripke frame (C,⊑) if it is valid in every
model based on that frame. We call the modal logic of (C,⊑), denoted by ML(C,⊑), the
collection of modal formulas which are valid in (C,⊑).

The problem proposed in [2] concerns characterizing for a given frame (C,⊑) the modal logic
ML(C,⊑) in terms of other well-known modal logics, basing on the study of the class C and of
the properties of the relation ⊑. This problem becomes more interesting when we consider C as
a class of structures and investigate modal logic it gives rise to. Therefore, we go on providing
the general setting for classes of structures.

Let S be a non-logical vocabulary, LS be the first order language with vocabulary S and let
C be a class of LS-structures (for example C could be the class of all LS-structures satisfying
a collection of LS-sentences). A language L ⊇ LS is called C-adequate if there is a definable
model relation |= between the elements of C and L sentences, which extends the usual model
relation od LS .

An L-translation is a function T : Prop → Sent(L), assigning an L-sentence to each
propositional variable. Any L-translation gives rise to a valuation vT for the class C, called the
L-structure valuation in a natural way: vT (p,M) = 1 if and only if M |= T (p). Clearly, this
induces a Kripke model (C,⊑, vT ).

The L-structure modal logic of (C,⊑), denoted by MLL(C,⊑) is the set of modal formulas
that are valid in each Kripke model (C,⊑, vT ) for an L-translation T . Notice that

ML(C,⊑) ⊆ MLL(C,⊑) ⊆ MLLS
(C,⊑).

Now let C and ⊑ be respectively a fixed class of structures and a binary relation on C. The
problem of showing that ML(C,⊑) is some well-known modal logic L can be easily split in two
tasks: proving that L is a lower bound for ML(C,⊑) and then showing that the lower bound is
also an upper bound.

Finding a lower bound is quite easy: the strategy is based on the classical results concerning
completeness of some modal logics with respect to certain classes of frames. Consider for
example S4.2, that is known to be complete with respect to the class of frames in which the
accessibility relation is reflexive, transitive and directed: if we manage to prove that the relation
⊑ on C is a directed pre-order, then we obtain S4.2 ⊆ ML(C,⊑).

The same argument can be applied to other well-known modal logics, depending on the
properties of the relation ⊑. In particular, if we want our logic ML(C,⊑) to be at least S4,
we need to request that ⊑ is reflexive and transitive on C. In other words, this happens if the
operator which sends each M ∈ C to {N ∈ C : M ⊑ N} gives rise to a closure operator.

The task of finding upper bounds and in particular proving that the lower bound is also
an upper bound requires more effort and is based on finding a labeling for a fixed frame using
(C,⊑). More specifically, if (F ,R) is a transitive and reflexive frame with initial world w0 (i.e.
w0Ru for every u ∈ F), then a C-labeling of the rooted frame (F ,R, w0) for an element M ∈ C
is an assignment to each node w ∈ F of a formula ϕw in the language L, such that:

1. every N ∈ C such that M ⊑ N satisfies exactly one ϕw;

2. if N ∈ C is such that M ⊑ N and N |= ϕw, then N |= 3ϕu if and only if wRu ;

3. M |= ϕw0 .
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We can show (a proof can be found in [1]) that if for a fixed frame (F ,R) satisfying the
hypothesis above and for a given initial world w0 ∈ F there exists a C-labeling for every M ∈ C,
then MLL(C,⊑) is contained in the modal logic of assertions valid in F at w0.

Suppose now that we have managed to show that L ⊆ ML(C,⊑) using the strategy for lower
bounds, and that MLL(C,⊑) ⊆ L using the method for upper bounds. Then we obtain:

L ⊆ ML(C,⊑) ⊆ MLL(C,⊑) ⊆ L

and so MLL(C,⊑) = L.
This method provides a general strategy that can be applied to characterize MLL(C,⊑) in

terms of other well-known modal logics and it can be applied in principle to whatever class of
structures we want. It could therefore be interesting to consider certain classes of algebras (for
example some varities or quasivarieties) and interesting binary relations on them in order to
find the modal logic they give rise to: this is exactly the framework in which the work presented
in [2] lives.

The authors consider the class, which is actually a variety, of abelian groups AG together
with the relation given by the operator IS: for A, B ∈ AG, the notation A ≤ B will stand for
A ∈ IS(B), i.e. A is isomorphic to a subgroup of B. They manage to show that the modal
logic ML(AG,≤) is exactly S4.2

The fact that S4.2 is a lower bound for the modal logic of abelian groups is clear, since it
is straighforward to prove that the relation ≤ on AG is reflexive, transitive and directed, since
given A, B ∈ AG there exists a common upper bound for them in terms of ≤, the cartesian
product A×B in which both A and B can be embedded.

In order to prove that S4.2 is also an upper bound for the modal logic of abelian groups, the
strategy of finding a labeling of certain frames which are complete with respect to S4.2 is used.
Without entering into detail, it turns out that often the existence of a labeling can be broken
down into simpler statements; the control statements can be seen as building blocks through
which we can construct more complex statements and therefore labelings (see [3] for more
details). The authors prove that given any abelian group A, there is always the possibility of
building another group B which satisfies exactly some specific control statements and in which
A can be embedded, i.e. A ∈ IS(B). In this way they show that S4.2 is an upper bound for
ML(AG,≤).

The construction that appears in [2], which is based on the tools of localisations and con-
trolled group amplifications, uses at great extent the fact that the groups are abelian: for
example with non-abelian groups, there wouldn’t be the possibility of dealing with controlled
group amplifications, since they would not be well defined. In fact the authors leave the readers
with an open question, which is related to what happens in the case of non-abelian groups.

It turns out that a different construction can be used in the general case of groups (even
non-abelian ones) and, since this construction does not use the operation of inverse, it works for
monoids as well. Moreover, this construction uses the same control statements as the ones that
were introduced for abelian groups: this is not obvious, since control statements are defined
as first order sentences in the language of the theory we are considering, which satisfy some
specific axiom schemata (see [3] for more details). This means that in principle any set of
formulas of the language can be chosen, provided that all the formulas in the collection satisfy
some specific properties. Therefore, even if a construction does not work for a certain class and
for a specific set of control statement, there may be another set of control statements and/or
another construction that work for that class of structures.

In this case there is no need to look for other control statements, since the ones provided
in [2] work equally well in the case of monoids, as long as another construction, which does
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not require commutativity and existence of inverse, is used. Therefore, using the same control
statements as the ones introduced in [2] but a different construction, it can be shown that
ML(M,≤) = S4.2, where we denoted by M the variety of monoids.

We highlight that this result is original and it constitutes an extension of the one presented
in [2], in fact any monoid homomorphism between two groups is also a group homomorphism;
suppose thatA andB are groups and thatA′ ⊆ A andB′ ⊆ B are monoids, then if f : A′ → B′

is a monomorphism, the natural extension of f to A is a group monomorphism from A to
B. Using our notation, if A′ ≤ B′ in the sense of monoids, then A ≤ B in the sense of
groups. Because our purpose was to characterize the modal logic induced by the relation ≤
(ore equivalently by the operator IS), this observation witnesses that the result above really
extends the one about groups.

We observe that this problem could have many future developments: it could be natural
to analyze what happens for other classes of structures with the relation given by IS, or we
could even switch to other significant operators, like SP, HSP, ISPu and so on. Let’s consider
for example the case in which the class is a given variety V and the relation ≤ is induced by
the operator IS as before: if V does not have the joint embedding property the relation is not
directed and therefore it is not true that S4.2 is a lower bound for ML(V,≤). However, ≤ is
clearly reflexive and transitive whatever the variety V is, which yields S4 ⊆ ML(V,≤): this is
what happens for example for lattices. Hence, one of the many possible further directions of
this work could be the one of finding conditions on V which allow us to characterize the modal
logic of the embedding on V in terms of modal logics which are based on S4.

Finally we remark that the problem we deal with is different from the one that is presented
in [4]: there the authors work on the collection of all the models of a fixed language and
investigate the modal logic of this class with respect to the relation of being a submodel. In
other words, from an algebraic point of view, they consider the class C consisting of all the
algebras of the same fixed type together with the relation ≥ such that given A, B ∈ C, A ≥ B
if B is a subalgebra of A; then they try to characterize ML(C,≥). This approach is different
from ours mainly for two reasons: firstly, we don’t work with the class of all algebras of the
same type (which is very wide and contains structures that may be very different from each
other), but we restrict to classes of algebras of the same type satisfying some specific axioms.
Moreover the relation considered in [4] is exactly the opposite with respect to the one we deal
with: for us A in in relation with B if A ∈ IS(B), while for the authors of [4] A is in relation
with B if B ∈ IS(A).
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