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The affinity between structural proof theory and the mathematical foundations of compu-
tation establishes mechanisms of proof compression as a natural object of study. The most
prominent proof compression mechanism is the cut rule [11, 12], which allows lemmas to be
reused in a proof. And indeed, eliminating the cuts from a proof can lead to a non-elementary
blow-up [6]. In propositional logic, this blow-up is still exponential [19].

In the area of proof complexity, a distinct subfield of proof theory, other mechanisms of
proof compression have been studied, the most notable ones being substitution [9] and Tseitin
extension [20]. In both cases, proof compression is achieved by permitting propositional vari-
ables to replace arbitrary subformulae in a proof. The cost of eliminating either rule from a
proof is an exponential blow-up (and it is not known whether this can be done more efficiently).

Given their conceptual similarity, it is perhaps not so surprising that, in the presence of
cut, extension and substitution are p-equivalent, i.e., a system with cut and substitution can
polynomially simulate one with cut and Tseitin extension [9], and vice versa [16]. This has been
shown in the setting of Frege systems, which always contain the cut because of the presence
of the modus ponens rule. Moreover, even in the absence of cut, it has also been demon-
strated that the two proof compression mechanisms of substitution and Tseitin extension are
p-equivalent [17,18]. However, it is not known if cut-free systems with extension or substitution
can p-simulate systems with cut and extension or substitution.

This leaves us with two powerful proof compression mechanisms: (i) the cut and (ii) exten-
sion/substitution. It is an open question whether one of them subsumes the other, or whether
they are truly independent.

In this work we give a surprising answer to this question. We observe that both proof
compression mechanisms are subsumed by a more general one, namely, guarded substitution,
which is a variant of explicit substitutions [1].

To see how this is possible, let us first observe that the proof compression of cut and
substitution comes from the ability of reusing information. And the most basic inference rules
that deal with duplication of information are the rules of contraction and cocontraction shown
below:1

A ∨A
c↓

A
and

A
c↑
A ∧A

(1)

A move to a deep inference proof system [7, 14], which allow for finer granularity in the
design of the inference rules, enables the restriction of these rules to their atomic form, shown

1In fact, the combination of contraction and cocontraction form another mechanism of proof compression,
when cut is absent. This has been investigated in [8,10,15]. However, we will not go into further details of this,
as we develop in this work a cut-free system that can p-simulate cut.



⊢ Γ, A ⊢ Ā,∆
cut

⊢ Γ,∆
;

A ∧ Ā
i↑

0
;

a ∧ ā
ai↑

0
;

(0 a 1) ∧ (1 a 0)

(0 ∧ 1) a (1 ∧ 0)
;

(A aB) ∧ (C aD)
pa∧

(A ∧ C) a (B ∧D)

Figure 1: Evolution of cut from the sequent calculus via deep inference to subatomic proof
theory

below, provided there is an additional purely linear inference rule in the system [7]. This rule,
called medial, is shown in the middle below:

a ∨ a
ac↓

a

(A ∧B) ∨ (C ∧D)
m
(A ∨ C) ∧ (B ∨D)

a
ac↑

a ∧ a
(2)

This leads to the proof system SKS [7], consisting only of atomic rules (like ac↓ and ac↑ above)
that change the size of a formula, and purely linear rules (like m above) that only rearrange
subformulae without changing the size.

The next insight comes from the concept of subatomic proof theory [2, 3, 5] which splits the
atoms into binary connectives. A formula “A a B” is then interpreted as “if a is false then A,
and if a is true then B”. In this setting, we can write a as 0 a 1 and its dual ā as 1 a 0. The
two rules of ac↓ and ac↑ from above now become:

(0 a 1) ∨ (0 a 1)

(0 ∨ 0) a (1 ∨ 1)
and

(0 ∧ 0) a (1 ∧ 1)

(0 a 1) ∧ (0 a 1)
(3)

which are just instances of the general rules

(A aB) ∨ (C aD)
q∨a

(A ∨ C) a (B ∨D)
and

(A ∧B) a (C ∧D)
p∧a

(A a C) ∧ (B aD)
(4)

which have the same shape as the medial rule in (2) above. The same principle also applies to
the cut rule: in Figure 1 we see the evolution of the cut, starting from the sequent calculus,
first becoming an atomic rule, and finally a subatomic rule. In this way we can obtain a proof
system for propositional logic in which all inference rules are linear rewriting steps [2], except
for the rules dealing with the units, for example

A

A ∧ 1

A

A ∨ 0

A ∧ 1

A

A ∨ 0

A
(5)

Even though these are rather trivial inference steps in a standard proof system, they are the only
ones that break a rigidly defined notion of linearity in a subatomic proof system. To achieve
what is called a strictly linear system, these can be eliminated, but the naive way of doing so
leads to an exponential blow-up of the size of the proof [4, 5]. However, by allowing explicit
substitutions as constructors in formulae and derivations, the size of the proof expansion can
be reduced to a polynomial [5]. The resulting system (called KDTS in [5]) is p-equivalent to
SKS (and therefore also to standard Frege systems without extension or substitution) and still
contains the cut (in its linear form, as shown on the right in Figure 1). And, unsurprisingly,
eliminating the cut from this system leads to an exponential blow-up [5]. Furthermore, it is
unknown whether these explicit substitutions can in any way polynomially simulate Tseitin
extension or substitution in Frege systems.



In other words, in terms of proof complexity, nothing has been gained so far with respect to
what we said at the beginning of this introduction; even in the unfamiliar climes of a subatomic
proof system with explicit substitutions, it appears that both cut and extension/substitution
operate as independent means of compressing proofs.

This motivates our paper, in which we introduce guarded substitutions that offer us a distinct
new means of proof compression. Guarded substitutions are a variant of explicit substitution
that, instead of representing the replacement of every occurrence of a free variable, only select
a certain subset of the free occurrences of the given variable. To make this formal, we assign to
every variable occurrence a range, and to every guarded substitution a guard, and the substitu-
tion can apply to the variable occurrence, if the guard is in the range. For example, the formula
⟨A|x⟩((x∧ x)∨ (y ∧ x)) with an ordinary explicit substitution becomes (A∧A)∨ (y ∧A) when
the substitution is carried out, whereas the formula ⟨⟨A|x⟩⟩p((xq,p ∧ xr) ∨ (yp ∧ xp,r)) becomes
(A ∧ xr) ∨ (yp ∧ A) when the substitution is carried out, because only the first and the last x
have the guard p in its range.

With this additional construct, the new system, that we call KSubG, can polynomially sim-
ulate Frege systems with substitution. Furthermore, we can do this with the cut-free fragment
KSubG−. In other words, guarded substitution can polynomially simulate the cut, as well as
Tseitin extension and substitution in Frege systems. And surprisingly, this can even be done
when we only allow the units 0 and 1 in the place of the formula to be substituted (the A in
the example above).

Since Frege systems with substitution are known to be the most potent propositional proof
systems, in the sense that they can polynomially simulate every other proof system for classical
propositional logic, our system KSubG has now the same property, with the additional feature
that every inference step is linear. There is never an inference that adds or deletes information.

This becomes possible because a subatomic derivation can be interpreted as a superposition
of standard derivations. Even though this idea has been around since the beginning of subatomic
proof theory [13], only our guarded substitutions allow to make use of this. We can see such
a superposition as executing several similar shaped derivations in parallel, and the guarded
substitutions can be used to read out the correct results.

For example, the derivation

Ψ = (x ∨ x) ∧
y ∧ 0

mix
y ∨ 0

is a superposition of the derivation

Φ =

a ∨ a
ac↓

a
∧

0
aw↓

ā
ai↑

0

because by substituting 0 for x and 1 for y in Ψ we can recover the result of assuming that a
is false in Φ, and by substituting 1 for x and 0 for y we can recover the result of assuming that
a is true. Then Φ can be encoded by the subatomic derivation with guarded substitutions

⟨⟨0|x, 1|y⟩⟩l ⟨⟨1|x, 0|y⟩⟩r ⟨Ψ|z⟩(zl a zr)

We can recover from this the conclusion of Φ, and the resulting derivation contains no cuts.
This allows for the factorisation of lemmas with different inputs, essentially performing

the work of both modus ponens and the Frege substitution rule. In this way, we are able to
p-simulate substitution Frege in a cut-free subatomic system with guarded substitutions.
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