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1 Introduction

Markov networks, also known as Markov random fields, are probabilistic graphical models that
represent the dependencies between random variables using an undirected graph [6, 7]. Markov
networks provide a compact representation of high-dimensional probability distributions, cou-
pled with efficient inference algorithms and a clear visual representation. Unlike directed graph-
ical models, such as Bayesian networks, Markov networks are useful for modelling phenomena
where directionality cannot be naturally imposed on the relationships between random vari-
ables. Markov networks have found widespread application in fields as diverse as image analysis,
natural language processing, bioinformatics, and social network analysis.

In this work, we adopt a fuzzy logic perspective on Markov networks. First, we argue that
interpreting the potential functions of a Markov network in terms of truth degrees clarifies their
nature and makes it easier to elicit the potential functions from experts. This interpretation
of potential functions gives rise to the concept of a graded Markov network. Secondly, we
introduce a two-layered fuzzy logic framework for reasoning about graded Markov networks.
We propose that this logic could serve as a specification language for Markov networks, as well
as a tool for reasoning about the specifications provided by experts or learned from data.

2 Markov networks

Recall that a random variable is a function 𝒜 from a set Ω(𝒜) (the sample space of the
variable) to a set Val(𝒜) (values of the variable). A random variable 𝒜 is discrete if Val(𝒜) is
finite. We will work exclusively with discrete random variables. If 𝓐 = (𝒜1, . . . ,𝒜n) is a tuple
of random variables, then an 𝓐-state is any tuple a ∈

∏n
i=1 Val(𝒜i) =def Val(𝓐).

Definition 1. A Markov network is a pair N = (𝓐,Φ) where 𝓐 = (𝒜1, . . . ,𝒜n) is a tuple
of discrete random variables and Φ = (ϕ1, . . . , ϕm) is a tuple of factors over 𝓐, that is, pairs
ϕi = (𝓐{i},𝓅i) where 𝓐{i} is a sub-tuple of 𝓐 (the scope of ϕi) and 𝓅i : Val(𝓐{i}) −→ R+ (the
potential function). We use the notation a{i} for elements of Val(𝓐{i}).

A network N = (𝓐,Φ) can be represented as a factor graph over variable vertices 𝓐, factor
vertices Φ, with an edge connecting a factor vertex ϕi with the variable vertices in its scope.

Example 1. A situation where three friends go to a pub and choose between two drinks, beer
(b) and kofola (k), can be represented by a Markov network as follows. Let 𝒜 = (A,B,C) be
random variables representing choices of the three friends and let Φ = (ϕi for i = 1, . . . , n) be
factors representing various constraints (e.g. A is very likely to order beer, B always orders the
same drink as A, C tends to order the same drinks as B and C would prefer kofola). A nework
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Figure 1: An example of a factor graph.

representing this scenario can be specified by the factor graph in Figure 1 and the following
potential functions, for example:

a ϕ1(a)
b 2
k 0.8

a b ϕ2(a, b)
b b 2
b k 0
k b 0
k k 2

b c ϕ3(b, c)
b b 1.2
b k 0.4
k b 0.4
k k 1.2

c ϕ4(c)
b 0.8
k 1.4

There is a close relationship between Markov networks and valued constraint satisfaction
problems [8]. Intuitively, factors correspond to valued constraints on states. However, factors
play different roles in VCSP and MN, respectively. While VCSP aims at finding the optimal
states, the primary role of a Markov network is to provide a compact representation of a
probability distribution over states.

Definition 2. For N = (𝓐,Φ = (ϕ1, . . . , ϕm)), we define:

Weight of a ∈ Val(𝓐) Normalising constant of N Probability of a ∈ Val(𝓐)

WN (a) =

m∏
i=1

ϕi(a{i}) ZN =
∑

b∈Val(𝓐)

W(b) PN (a) = WN (a) · Z−1
N

Probability of events E ⊆ Val(𝓐) is defined as PN (E) =
∑

a∈E PN (a) and conditional proba-
bility is defined as usual.

3 Graded Markov networks

Interpreting the numerical values of factors in Markov networks is a recognised challenge; see,
for example, [7, pp. 107–108], [6, p. 106] and [2, p. 269]. Inspired by the connection between
Markov networks and valued constraint satisfaction problems, we observe that this problem is
mitigated within a particular class of Markov networks.

Definition 3. A Markov network N = (𝓐,Φ) is graded if ϕi(a{i}) ∈ [0, 1] for all ϕi ∈ Φ
and all a ∈ Val(𝓐). A Markov network is normal graded if maxa∈Val(𝓐) ϕi(a{i}) = 1 for all
ϕi ∈ Φ and all a ∈ Val(𝓐).

In graded MNs, ϕi(a{i}) represents the truth degree of the imprecise statement “a{i} is
compatible with constraint i”. Such statements can readily be provided by domain experts
since people are used to scales (think of film ratings, satisfaction questionnaires, etc.). The real
unit interval [0, 1] can be thought of as an infinitely fine scale.

It can be easily shown that for each Markov network N there is a normal graded network
M , based on the same tuple of random variables 𝓐, which is equivalent to N in the sense that
PN (a) = PM (a) for all a ∈ Val(𝓐). (First, normalise globally by the highest value appearing
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in all potential tables. Then, normalise each table locally by the maximal value appearing in
it.)

In addition, using [0, 1] instead of R+ (or even R+∞) enables a better grasp on the relative
sizes of degrees. Indeed, while all closed intervals of real numbers are homeomorphic, in [0, 1]
we have a fixed standard arithmetics that allows e.g. to see the number 0.5 as the middle point
of the interval in a canonical way, whereas the exact location of the middle point of R+∞ would
actually depend on what particular homeomorphism one uses to map it back to [0, 1].

4 A fuzzy logic for Markov networks

Let σ be the first-order signature with individual constants Ak, ak for k ∈ ω and with individual
variables Var = {xk | k ∈ ω}, where the only relational symbol is identity.

Definition 4. We define (σ-)parameters and (σ-)formulas as follows:

p := fi(α) | P (α) φ := W(α) | p | c̄ | φ→ φ | φ · φ | φ+ φ

where α is a quantifier-free first-order σ-formula (an event formula) and c ∈ [0, 1] ∩Q.

Example 2. The structure of the Markov network from Example 1 can be expressed by the
formula

W(A = x ∧B = y ∧ C = z) ↔ f1(A = x) · f2(A = x ∧B = y) · f3(B = x ∧ C = z) · f4(C = z)

and the potential functions of the network are defined by formulas such as

f3(B = b ∧ C = k) ↔ 0.25

Constraints elicited from experts, such as ‘C is more likely to order kofola than beer’ can be
expressed by f4(C = b) → f4(C = k).

The syntax of our logic builds on the syntax of two-layered probabilistic fuzzy logics [3, 4], to
which we add parameters. The role of parameters fi(α) is to directly specify potential functions
of Markov networks. Parameters P (α) are used in probabilistic queries, see Example 3 below.
The ‘upper layer’ of the syntax is an extension of Product  Lukasiewicz logic [5] with rational
constants and the addition operator +.

Ground terms, formulas and parameters are defined as those without occurrences of x ∈
Var . A ground σ-interpretation is a set ∆ of ground atomic σ-formulas where the relation
{⟨t1, t2⟩ | t1 = t2 ∈ ∆} is an equivalence relation on the set of ground σ-terms. The set of
ground σ-interpretations (resp. parameters) is denoted by GrInt(σ) (resp. GrPar(σ)).

Definition 5. A (σ-)model is M = (S, I,V) where S = (Ω,Σ, µ) is a measure space and

I : Ω → GrInt(σ) V : GrPar(σ) → [0, 1]

An evaluation is ℯ : V ar → GrTm(σ).

The semantics of event formulas is specified as follows: ∥α∥M,ℯ = {w ∈ Ω | (I(w), ℯ) |= α},
where |= is defined as usual in first-order logic. We assume that ∥α∥M,ℯ ∈ Σ for all α ∈ EvFm.

Definition 6. The interpretation of σ-formulas in a model M given an evaluation ℯ is
defined as follows:
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JW(α)KM,ℯ = µ
(
∥α∥M,ℯ

)
Jp[x1, . . . , xn]KM,ℯ = V(p[ℯ(x1), . . . , ℯ(xn)])

Jc̄KM,ℯ = c Jφ→ ψKM,ℯ = 1 − JφKM,ℯ + JψKM,ℯ Jφ ⋆ ψKM,ℯ = JφKM,ℯ ⋆ JψKM,ℯ

for ⋆ ∈ {·, +}.

Note that ∥φ∥M,ℯ ∈ R+, not necessarily [0, 1]. The situation here is similar to the
 Lukasiewicz unbound logic [1].

Definition 7. Entailment is a relation between a pair (∆,Γ) on the one hand and φ on the
other hand, where ∆ is a set of event formulas and Γ ∪ {φ} is a set of formulas, defined as
follows: ∆,Γ ⊨ φ iff, for all M,

if ∥α∥M,ℯ = Ω for all α ∈ ∆ and all ℯ, and JψKM,ℯ ≥ 1 for all ψ ∈ Γ and all ℯ,

then JφKM,ℯ ≥ 1 for all ℯ.

Example 3. Probabilistic queries in Markov networks correspond to specific entailment prob-
lems ∆,Γ ⊨ φ in our logic. Let ∆ be a relevant set of event assumptions that contains, e.g.
formulas such as A = ai ↔ ¬

∨
j∈IA\{i}(A = aj) for IA representing the set of values of the

random variable A. Let Γ contain a formula representing the structure of the intended network
and formulas defining its potential functions. Moreover, let Γ contain the query assumption

W(A = b ∧B = b ∧ C = k) ↔ P (A = b ∧B = b ∧ C = k) ·W(⊤)

where W(⊤) represents the normalising constant.1 Finally, let φ be the query such as c →
P (A = b ∧B = b ∧ C = k) for some desired threshold c ∈ [0, 1] ∩Q.

Finding a complete axiomatisation and determining decidability and complexity of our logic
are natural open problems.
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[3] P. Hájek, L. Godo, and F. Esteva. Fuzzy logic and probability. In P. Besnard and S. Hanks, editors,
UAI’95: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages
237–244, San Francisco, 1995. Morgan Kaufmann.
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